108 research outputs found

    The emerging role of the RBM20 and PTBP1 ribonucleoproteins in heart development and cardiovascular diseases

    Get PDF
    Alternative splicing is a regulatory mechanism essential for cell differentiation and tissue organization. More than 90% of human genes are regulated by alternative splicing events, which participate in cell fate determination. The general mechanisms of splicing events are well known, whereas only recently have deep-sequencing, high throughput analyses and animal models provided novel information on the network of functionally coordinated, tissue-specific, alternatively spliced exons. Heart development and cardiac tissue differentiation require thoroughly regulated splicing events. The ribonucleoprotein RBM20 is a key regulator of the alternative splicing events required for functional and structural heart properties, such as the expression of TTN isoforms. Recently, the polypyrimidine tract-binding protein PTBP1 has been demonstrated to participate with RBM20 in regulating splicing events. In this review, we summarize the updated knowledge relative to RBM20 and PTBP1 structure and molecular function; their role in alternative splicing mechanisms involved in the heart development and function; RBM20 mutations associated with idiopathic dilated cardiovascular disease (DCM); and the consequences of RBM20-altered expression or dysfunction. Furthermore, we discuss the possible application of targeting RBM20 in new approaches in heart therapies

    Transcriptome signatures from discordant sibling pairs reveal changes in peripheral blood immune cell composition in Autism Spectrum Disorder

    Get PDF
    Notwithstanding several research efforts in the past years, robust and replicable molecular signatures for autism spectrum disorders from peripheral blood remain elusive. The available literature on blood transcriptome in ASD suggests that through accurate experimental design it is possible to extract important information on the disease pathophysiology at the peripheral level. Here we exploit the availability of a resource for molecular biomarkers in ASD, the Italian Autism Network (ITAN) collection, for the investigation of transcriptomic signatures in ASD based on a discordant sibling pair design. Whole blood samples from 75 discordant sibling pairs selected from the ITAN network where submitted to RNASeq analysis and data analyzed by complementary approaches. Overall, differences in gene expression between affected and unaffected siblings were small. In order to assess the contribution of differences in the relative proportion of blood cells between discordant siblings, we have applied two different cell deconvolution algorithms, showing that the observed molecular signatures mainly reflect changes in peripheral blood immune cell composition, in particular NK cells. The results obtained by the cell deconvolution approach are supported by the analysis performed by WGCNA. Our report describes the largest differential gene expression profiling in peripheral blood of ASD subjects and controls conducted by RNASeq. The observed signatures are consistent with the hypothesis of immune alterations in autism and an increased risk of developing autism in subjects exposed to prenatal infections or stress. Our study also points to a potential role of NMUR1, HMGB3, and PTPRN2 in ASD

    Advanced cellular models for rare disease study: exploring neural, muscle and skeletal organoids

    Get PDF
    Organoids are self-organized, three-dimensional structures derived from stem cells that can mimic the structure and physiology of human organs. Patient-specific induced pluripotent stem cells (iPSCs) and 3D organoid model systems allow cells to be analyzed in a controlled environment to simulate the characteristics of a given disease by modeling the underlying pathophysiology. The recent development of 3D cell models has offered the scientific community an exceptionally valuable tool in the study of rare diseases, overcoming the limited availability of biological samples and the limitations of animal models. This review provides an overview of iPSC models and genetic engineering techniques used to develop organoids. In particular, some of the models applied to the study of rare neuronal, muscular and skeletal diseases are described. Furthermore, the limitations and potential of developing new therapeutic approaches are discussed

    Analyzing BioRad-Illumina Single Cell RNA-Seq data with open source tools

    Get PDF
    Single cell RNA-Seq is a powerful technique that is becoming more popular since it enables to sequence the transcriptome of each cell within a population of different cell types in a single experiment. Currently, there are a few different technologies, like BioRad-Illumina ddSeq and 10X Chromium

    Reconstruction and functional analysis of altered molecular pathways in human atherosclerotic arteries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atherosclerosis affects aorta, coronary, carotid, and iliac arteries most frequently than any other body vessel. There may be common molecular pathways sustaining this process. Plaque presence and diffusion is revealed by circulating factors that can mediate systemic reaction leading to plaque rupture and thrombosis.</p> <p>Results</p> <p>We used DNA microarrays and meta-analysis to study how the presence of calcified plaque modifies human coronary and carotid gene expression. We identified a series of potential human atherogenic genes that are integrated in functional networks involved in atherosclerosis. Caveolae and JAK/STAT pathways, and S100A9/S100A8 interacting proteins are certainly involved in the development of vascular disease. We found that the system of caveolae is directly connected with genes that respond to hormone receptors, and indirectly with the apoptosis pathway.</p> <p>Cytokines, chemokines and growth factors released in the blood flux were investigated in parallel. High levels of RANTES, IL-1ra, MIP-1alpha, MIP-1beta, IL-2, IL-4, IL-5, IL-6, IL-7, IL-17, PDGF-BB, VEGF and IFN-gamma were found in plasma of atherosclerotic patients and might also be integrated in the molecular networks underlying atherosclerotic modifications of these vessels.</p> <p>Conclusion</p> <p>The pattern of cytokine and S100A9/S100A8 up-regulation characterizes atherosclerosis as a proinflammatory disorder. Activation of the JAK/STAT pathway is confirmed by the up-regulation of IL-6, STAT1, ISGF3G and IL10RA genes in coronary and carotid plaques. The functional network constructed in our research is an evidence of the central role of STAT protein and the caveolae system to contribute to preserve the plaque. Moreover, Cav-1 is involved in SMC differentiation and dyslipidemia confirming the importance of lipid homeostasis in the atherosclerotic phenotype.</p

    Dissection of HLA-C gene region to investigate its association with complex traits

    Get PDF
    The genomic region of HLA gene cluster (6p21.3) contains several highly polymorphic genes involved in the immune response and therefore, they have been previously associated to several immune and inflammatory disorders. For the present study we investigated more than 3500 known alleles of HLA-C gene (from IPD-IMGT/HLA database, genomic sequences) that are grouped into 14 serogroups (e.g., C*01:02:01:01). All the sequences have been aligned against the human genome reference sequence (both versions; hg19 and hg38). Overall, the HLA-C gene (length ~3000 bp) contains more than 1500 SNPs. We used a clustering approach to understand how the alleles are evolutionarily connected. According to the clustering analysis we observed that sequences of the same serogroup cluster together more often than sequences of other serogroups, even if with several exceptions. This confirms that alleles of the same serogroup share strong identity in their sequence. Interestingly, as general rule, we observed that the main tree presents two branches, containing each a similar structure (relative distance between serogroups). Of note, the sequences of C*07 and C*17 serogroups belonged to one of the two branches only, whereas the sequences of C*06 and C*12 serogroups were observed in the alternative branch of the tree. We are now studying what are the main features that characterize the two branches. Moreover, the study will go on by investigating the association of the HLA-C serogroup SNP-based alleles with kidney related disease (INCIPE study) and Alzheimer’s disease (NIAGADS database) in large cohorts of individuals

    Low Levels of Serum Paraoxonase Activities are Characteristic of Metabolic Syndrome and May Influence the Metabolic-Syndrome-Related Risk of Coronary Artery Disease

    Get PDF
    Low concentrations of plasma high-density lipoprotein (HDLs) are characteristic in metabolic syndrome (MS). The antioxidant ability of HDLs is, at least in part, attributable to pleiotropic serum paraoxonase (PON1). Different PON1 activities have been assessed in 293 subjects with (n = 88) or without MS (n = 205) and with (n = 195) or without (n = 98) angiographically proven coronary artery disease (CAD). MS subjects had low PON1 activities, with a progressively decreasing trend by increasing the number of MS abnormalities. The activity versus 7-O-diethyl phosphoryl,3-cyano,4-methyl,7-hydroxycoumarin (DEPCyMC), which is considered a surrogate marker of PON1 concentration, showed the most significant association with MS, independently of both HDL and apolipoprotein A-I levels. Subjects with MS and low DEPCyMCase activity had the highest CAD risk (OR 4.34 with 95% CI 1.44–13.10), while no significant increase of risk was found among those with MS but high DEPCyMCase activity (OR 1.45 with 95% CI 0.47–4.46). Our results suggest that low PON1 concentrations are typical in MS and may modulate the MS-related risk of CAD

    Studiare la regione HLA negli esomi

    Get PDF
    La regione HLA (6p21.3, ~4Mb) contiene un gruppo di geni altamente polimorfici coinvolti nella risposta immunitaria

    Hyperhomocysteinemia and Mortality after Coronary Artery Bypass Grafting

    Get PDF
    BACKGROUND: The independent prognostic impact, as well as the possible causal role, of hyperhomocysteinemia (HHcy) in coronary artery disease (CAD) is controversial. No previous study specifically has addressed the relationship between HHcy and mortality after coronary artery bypass grafting (CABG) surgery. The aim of this study is to evaluate the prognostic impact of HHcy after CABG surgery. METHODOLOGY AND PRINCIPAL FINDINGS: We prospectively followed 350 patients who underwent elective CABG between May 1996 and May 1999. At baseline, fasting total homocysteine (tHcy) levels were measured in all participants, and a post-methionine loading (PML) test was performed in 77.7% of them (n = 272). After a median follow-up of 58 months, 33 patients (9.4%) had died, 25 because of cardiovascular events. HHcy, defined by levels higher than the 90(th) percentile (25.2 µmol/L) of the population's distribution, was significantly associated to total and cardiovascular mortality (P = 0.018 [log-rank test 5.57]; P = 0.002 [log-rank test 9.76], respectively). The PML test had no prognostic value. After multiple adjustment for other univariate predictors by Cox regression, including statin therapy (the most powerful predictor in uni-/multivariate analyses), high-sensitivity C Reactive Protein (hs-CRP) levels, and all known major genetic (MTHFR 677C→T polymorphism) and non-genetic (B-group vitamin status and renal function) tHcy determinants, HHcy remained an independent prognostic factor for mortality (HRs: 5.02, 95% CIs 1.88 to 13.42, P = 0.001). CONCLUSIONS: HHcy is an important prognostic marker after CABG, independent of modern drug therapy and biomarkers

    CACNA1E Variants Affect Beta Cell Function in Patients with Newly Diagnosed Type 2 Diabetes. The Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 3

    Get PDF
    Background: Genetic variability of the major subunit (CACNA1E) of the voltage-dependent Ca 2+ channel Ca V2.3 is associated to risk of type 2 diabetes, insulin resistance and impaired insulin secretion in nondiabetic subjects. The aim of the study was to test whether CACNA1E common variability affects beta cell function and/or insulin sensitivity in patients with newly diagnosed type 2 diabetes. Methodology/Principal Findings: In 595 GAD-negative, drug naïve patients (mean6SD; age: 58.5610.2 yrs; BMI: 29.965 kg/m 2, HbA1c: 7.061.3) with newly diagnosed type 2 diabetes we: 1. genotyped 10 tag SNPs in CACNA1E region reportedly covering,93 % of CACNA1E common variability: rs558994, rs679931, rs2184945, rs10797728, rs3905011, rs12071300, rs175338, rs3753737, rs2253388 and rs4652679; 2. assessed clinical phenotypes, insulin sensitivity by the euglycemic insulin clamp and beta cell function by state-of-art modelling of glucose/C-peptide curves during OGTT. Five CACNA1E tag SNPs (rs10797728, rs175338, rs2184945, rs3905011 and rs4652679) were associated with specific aspects of beta cell function (p,0.0520.01). Both major alleles of rs2184945 and rs3905011 were each (p,0.01 and p,0.005, respectively) associated to reduced proportional control with a demonstrable additive effect (p,0.005). In contrast, only the major allele of rs2253388 was related weakly to more severe insulin resistance (p,0.05). Conclusions/Significance: In patients with newly diagnosed type 2 diabetes CACNA1E common variability is strongl
    corecore