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Abstract: Alternative splicing is a regulatory mechanism essential for cell differentiation and tissue
organization. More than 90% of human genes are regulated by alternative splicing events, which
participate in cell fate determination. The general mechanisms of splicing events are well known,
whereas only recently have deep-sequencing, high throughput analyses and animal models provided
novel information on the network of functionally coordinated, tissue-specific, alternatively spliced
exons. Heart development and cardiac tissue differentiation require thoroughly regulated splicing
events. The ribonucleoprotein RBM20 is a key regulator of the alternative splicing events required
for functional and structural heart properties, such as the expression of TTN isoforms. Recently,
the polypyrimidine tract-binding protein PTBP1 has been demonstrated to participate with RBM20 in
regulating splicing events. In this review, we summarize the updated knowledge relative to RBM20 and
PTBP1 structure and molecular function; their role in alternative splicing mechanisms involved in the
heart development and function; RBM20 mutations associated with idiopathic dilated cardiovascular
disease (DCM); and the consequences of RBM20-altered expression or dysfunction. Furthermore, we
discuss the possible application of targeting RBM20 in new approaches in heart therapies.

Keywords: alternative splicing; ribonucleoproteins; RRM motif; PTBP1; RBM20; DCM; heart development;
titin; RNA binding proteins; exon exclusion

1. Introduction

Splicing is a general mechanism that allows the removal of intron sequences from a precursor
to mature mRNA. It is now accepted that, in higher eukaryotes, alternative splicing represents the
major post-transcriptional mechanism that amplify the functional repertoire of expressed genes. In the
human genome, ~95% of the genes containing introns are alternatively spliced [1]. The mechanism
that allows alternative splicing has been intensively studied and several bioinformatics tools have been
developed to predict the transcript variants of a specific gene [2,3]. However, not all the alternatively
spliced transcripts can be translated into a protein, estimating that about 37% of human genes generate
multiple protein isoforms [1]. While constitutive exon splicing requires ubiquitous splicing factors,
which are components of the spliceosomal complex, recognizing highly conserved consensus sequences
in introns, alternative splicing events are tightly regulated processes in cell responses and tissue
differentiation [1,4–6]. It is not surprising that cells that do not undergo self-renewal, such as neurons
and muscle cells, may be subjected to an intense alternative splicing activity during the life of the
specific tissue [7–10].
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Several regulatory factors can cooperate or compete in exon definition to allow the expression of
tissues-specific transcript variants. Constitutive exon splicing derives from the spliceosomal recognition
of conserved sequences at the 5′ splice site (ss), 3′ ss and branch site, whereas alternative exon recognition
is regulated by cis-regulatory sequences in exon or intron components of the pre-mRNA, such as
the exonic and intronic splicing enhancers, ESEs and ISEs, respectively, and the exonic and intronic
splicing silencers, ESSs and ISSs. Enhancer elements may be recognized by trans-acting factors, such
as SR proteins, a family of serine/arginine-rich family proteins, whereas silencing sequences may be
generally recognized by the heterogeneous nuclear ribonucleoproteins (hnRNPs) [11,12]. SR proteins act
generally as positive regulators, favoring exon inclusion, while hnRNPs most frequently act as negative
regulators, leading to exon exclusion. A combinatorial binding of these factors in a position-dependent
manner modulates the contribution of each factor, balancing their positive or negative effects on exon
inclusion or exclusion [13]. Several databases and online tools concerning human alternative splicing
and splice regulator factors, computationally generated or experimentally assessed, are available on
websites, such as ASpedia, SpliceAid-F, MiasDB, SplicePort and HSF [14–23]. In recent years, intensive
studies have contributed to identify several specific factors that participate in heart development as
well as their involvement in heart diseases. Most of these factors, including transcription factors,
constitutive proteins that accounts for cytoskeleton organization, electric impulse transmission, channel
and cell-to-cell connection are regulated by alternative splicing [24,25]. RNA binding motif protein
20 (RBM20) has been identified as a key factor in driving the splicing events in transcripts that are
selectively expressed in the heart [26–29]. Starting from genome-wide linkage analysis in two large
families with autosomal dominant dilated cardiomyopathy (DCM), the identification of a mutation
hotspot within RBM20 has directed the investigation on RBM20-regulated genes that may account for
the development of cardiomyopathies [30]. Remarkably, RBM20 regulates alternative splicing of titin
(TTN), one of the major disease-causing genes in cardiac muscle. Mutations or altered expression of
RBM20 can lead to the shift in the expression pattern of titin transcript variants, which are associated
with cardiac diseases, including DCM [31].

Based on recent studies, novel evidences have highlighted the role of the well-known splicing
regulator polypyrimidine-tract binding protein 1 (PTBP1) in the regulation of alternatively spliced
variants that are critical for the heart functionality [31,32]. In this review, we summarize the functional
evidences of the role of RBM20 in the regulation of TTN and additional genes involved in heart
function and cardiac diseases development. Furthermore, we review the current knowledge about
the contribution of RBM20 and PTBP1 in heart alternative splicing events, their combinatory role in
selecting specific exons and RBM20’s role in cardiovascular diseases.

2. RBM20 Protein Structure

The RBM20 gene, located on chromosome 10 (10q25.2), encodes for a protein of 1227 amino acids
and contains conserved functional domains: a leucine (L)-rich region at the N-terminus, two zinc
finger (ZnF) domains (ZnF1 and ZnF2), an RNA recognition motif (RRM), an arginine–serine (RS)
domain and a glutamate E-rich region between the RS domain and the ZnF2 domain at the C-terminal
(Figure 1) [33–36]. We have demonstrated that RBM20 requires both the RRM and the RS-rich region to
localize into the nucleus [34].
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proteins is indicated relative to PTBP1. (B) Structure-based sequence alignment of the PTBP and 
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Jalview software [37]. Secondary structure elements predicted by the JPRED tool are indicated below 

the alignment. The RNA-binding domain cores, RNP1and RNP2, are indicated. 
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Figure 1. Schematic representation of the RBM20 and PTBP protein structures and multi-alignment
of the RRM domains. (a) Numbers indicate the position of the amino acid residues relative to the
protein domains. E-rich, glutamate-rich region; L-rich, leucine-rich region; P-rich, proline-rich region.
RS, arginine/serine-rich region; ZnF1-2, zinc finger domains; NLS, nuclear localization signal; NES,
nuclear export signal; RRM1 to 4, RNA-recognition motif domains. Percentage of homology of PTBP
proteins is indicated relative to PTBP1. (b) Structure-based sequence alignment of the PTBP and RBM20
RRM domains. The alignment was performed by Clustal Omega analysis and edited using Jalview
software [37]. Secondary structure elements predicted by the JPRED tool are indicated below the
alignment. The RNA-binding domain cores, RNP1and RNP2, are indicated.

More recently, phosphorylation of the arginine–serine–arginine–serine–proline (RSRSP) stretch,
within the RS domain, as well as their conservation, have been shown to be critical for RBM20 nuclear
localization [35]. High-throughput sequencing and proteomics analyses indicate that RBM20 binds at
multiple UCUU sites present at the 3′ and 5′ splice sites and it may interact with U1 and U2 small
nuclear ribonucleic particles (snRNPs) and U2-related proteins, including U2AF65 and U2AF35 [38].
In the nuclei of mouse atrial myocyte HL-1 cells, RBM20 has been demonstrated to partially colocalize
with PTBP1 and U2AF65 [33].

RBM20 is one of the few heart-specific splicing factors that has been demonstrated to regulate
alternative splicing events of selected genes implicated in sarcomere assembly, ion transport and
diastolic function [33]. Different types of alternative splicing events, including exon repression,
mutually exclusive exon selection, exon inclusion, intron retention and exon shuffling are regulated
by RBM20 [33,38,39]. The essential structural domains required for splicing activities are not fully
identified, although RBM20 mutations in the RSRSP stretch and E-rich region have been demonstrated
to affect exon splicing regulation [33,40]. Mutations at residues R634W and S635A of the RS-rich
domain impair RBM20 nuclear localization, resulting in defective splicing regulation [33,35].
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3. PTBP Proteins’ Structure and Function

The polypyrimidine tract-binding proteins (PTBPs) are ribonucleoproteins characterized by their
ability to bind UC-rich regions within introns flanking regulated exons [41]. PTBP1, also known as
hnRNP1 (heterogeneous nuclear ribonuclear protein I), was the first identified protein of the PTBP
paralogs group, based on its property to bind to polypyrimidine sequences in precursor mRNAs [42–45].
PTBP1, widely expressed in tissues, is a shuttling protein between the nucleus and the cytoplasm
that accumulates in the perinucleolar compartment (PNC) of the cells. [42,46]. PTBP1 is one of the
most studied repressors of alternative splicing events. Beside its role in splicing processes, PTBP1
participates in several steps of RNA metabolism, including stability, polyadenylation, transport and
cap-independent translation driven by internal ribosomal entry sites (IRESs) [41,47,48]. Tissue-specific
PTBP1 roles are demonstrated in different tissues, including cardiomyocytes differentiation [49,50],
neuronal development [51] and B lymphocytes selection in germinal center [52]. Furthermore, PTBP1
regulates microRNAs that repress neuronal-specific genes in non-neuronal cells. Depletion of PTBP1
in fibroblasts has been shown to induce fibroblast conversion into neurons by reprogramming the
splicing events [53]. PTBP1 may be overexpressed in tumors, participating in proliferation control and
migration of the cancer cells [54,55].

Differently from PTBP1, which is widely expressed in tissues and neuronal progenitor cells, the
PTBP2 homolog, also known as nPTB, is mainly expressed in neurons and testis [56,57]. In neuronal
differentiation, PTBP1 and PTBP2 undergo a programmed switch in their expression levels driving
neuronal maturation [58–61]. When PTBP1 is highly expressed in the cell, it downregulates PTBP2
through an alternative splicing event that leads to nonsense-mediated decay (NMD) and PTBP2 mRNA
degradation [61,62]. PTBP1 and PTBP2 share 74% sequence identity and a similar domain organization,
represented by an N-terminal region containing a nuclear localization sequence (NLS), a nuclear export
sequence (NES) [43,63,64] and four RNA recognition motifs (RRM1-4). RRM1 and RRM4 domains
are folded in the canonical βαββαβ RRM structure, whereas in PTBP1 the RRM2 and RRM3 are
extended by an additional fifth β-strand [65,66] (Figure 1). PTBP1 and PTBP2 bind UC-rich motifs,
similarly to RBM20, although several RBM20 RRM residues differ from PTBP1 RRMs (Figure 1b).
The repressive splicing activity of PTBP1 may be the result of different mechanisms that include
blocking of spliceosome components, such as U2AF65 [67,68], hiding of the splice sites through the
formation of oligomeric complexes [69] or by pre-mRNA modeling to favor the formation of loops that
include regulated exons [70–74]. The binding to pyrimidine-rich motifs (e.g., UCUU and CUCUCU)
mediated by the β sheets of PTBP1 RRM2 and 3, allows the identification of regulated exons [70–72].

PTBP1 and PTBP2 functions are modulated by interaction or competition with additional factors
that may act as co-factors or competitors of PTBP1, such as Nova-1, Nova-2 [75], Raver1 [76,77],
Raver2 [78,79] and MRG15 [80]. The interaction of PTB with Raver1 has been demonstrated to
play a role in tissue splicing events, enhancing the smooth muscle-specific alternative splicing of
alpha-tropomyosin (TM) exon 3 [76].

PTBP3, also known as ROD1 (Regulator Of Differentiation 1), has been discovered in hematopoietic
cells [81]. PTBP3 binds preferentially to stretch of poly(G) and poly(U) sequences and is a regulator
of EPO-dependent erythropoiesis. This PTBP paralog is highly expressed in hematopoietic cells
and plays a role in the regulation of cell differentiation by repressing tissue-specific exons. It has
been demonstrated that PTBP3 may promote exon 6 skipping in a Fas (Apo-1/CD-95) transcript
with a comparable efficiency to PTBP1 and PTBP2 [82,83]. Recently, PTBP3 have been demonstrated
to promote breast cancer epithelial–mesenchymal transition (EMT), promoting the expression of
zinc finger transcription factor ZEB1, an EMT inducer, by binding to ZEB1 3′UTR and preventing
its degradation [84]. PTBP3 may also play a pro-oncogenic role in gastric cancer cell cycle and
growth, regulating the alternative splicing of transcription isomers of the Caveolin1 (CAV1) gene [85].
Furthermore, PTBP3 overexpression in human colorectal cancer has been demonstrated to enhance the
expression of a cancer progression factor, the hypoxia-inducible transcription factors 1α (HIF-1α), by
directly binding to the HIF-1α 5’UTR mRNA [86]. In pancreatic cancer cells, PTBP3 may promote tumor
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growth and resistance to chemotherapy by enhancing the mRNA stability of the autophagy-related
gene ATG12 [87].

4. Regulation of Alternative Splicing Events in Heart by RBM20 and PTB

4.1. RBM20 Regulated Cardiac Pre-mRNAs

RBM20 exon targets have been initially identified by RNA-seq analyses in a Rbm20-/- rat’s heart
and in human heart tissues derived from subjects carrying RBM20 mutations. These experimental
approaches revealed a set of 31 genes regulated by RBM20 [33]. Photoactivable ribonucleoside-enhanced
crosslinking-immunoprecipitation (PAR-CLIP) and high-throughput sequencing of immunoprecipitated
RNA (HITS-CLIP) analyses, demonstrated a direct binding of RBM20 to stretches of UCUU pyrimidine in
18 genes differently regulated in cardiomyocytes derived from a Rbm20-/- rat heart compared to the wild
type (wt) [38]. These wide analyses identified eight human and rat orthologous genes as RBM20 targets,
most of them directly involved in heart function. These genes include the sarcomeric protein titin (Tnt),
calcium/calmodulin dependent protein kinase II δ (CaMKII-δ), calcium voltage-gated channel Subunit α1
C calcium protein (Cacna1c), LIM domain binding 3 protein (Ldb3), LIM domain-only protein 7 (Lmo7),
PDZ and LIM domain 5 protein (Pdlim3), reticulon 4 protein (Rtn4) and ryanodine receptor 2 (Ryr2).

Since the discovery of the first set of RBM20 target genes by RNA-seq, further studies have
contributed to deepen the understanding of heart regulation mechanisms of transcript variants
expression, extending the list of validated human or rat genes regulated by RBM20 (Table 1).

Table 1. Representative heart genes regulated by RBM20 and PTBP1.

Gene Symbol a Gene Name Regulated
Exons Species References

RBM20-regulated genes

CACNA1C Calcium Voltage-Gated Channel
Subunit α1 C

9 Human ESC RBM20 KO CMs [88]

9* Rat cardiomyocytes [89]

CAMK2D Calcium/calmodulin dependent
protein kinase II delta 14

Human cardiac RBM20
(S635A) tissue, Rbm20-/- rats,
Human ESC RBM20 KO CMs

[33]

CAMKIIG Calcium/calmodulin dependent
protein kinase II gamma 12–15 Human cardiac RBM20

(S635A) tissue, Rbm20-/- rats [33]

FHOD3 Formin homology 2 domain
containing 3 12–14 HeLa cells [32]

LDB3 LIM domain binding 3 4, 5/6 Human cardiac RBM20
(S635A) tissue, Rbm20-/- rats [33]

LMO7 LIM domain only protein 7 9, 10 Rbm20-/- rats [38]

MLIP Muscular-enriched A type
laminin-interacting protein 9, 10 Rbm20-/- rats [38]

PDLIM3 PDZ and LIM domain 3 4–6 Rbm20-/- rats [38]

RTN4 Reticulon 4 3, 4 Rbm20-/- rats [38]

RYR2 Ryanodine receptor 2 24 bp exon Rbm20-/- rats [38]

SH3KBP1 SH3 domain containing kinase
binding protein 1 6–7 Human cardiac RBM20

(S635A) tissue, Rbm20-/- rats [33]

SORBS1 Sorbin and SH3 domain
containing 1 2 Human cardiac RBM20

(S635A) tissue, Rbm20-/- rats [33]

TRDN Triadin 8 Human cardiac RBM20
(S635A) tissue, Rbm20-/- rats [33]

TTN Titin PEVK exons
Human cardiac RBM20

(S635A) tissue, Rbm20-/- rats,
Human ESC RBM20 KO CMs

[33,88]
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Table 1. Cont.

Gene Symbol a Gene Name Regulated
Exons Species References

PTBP1-regulated genes

ACTN1 α-actinin NM/SM Non-smooth muscle cells,
PAC1 smooth muscle cells [90,91]

CACNA1C Calcium Voltage-Gated Channel
Subunit α1 C 8/8a Neuro-2a cells [92]

FHOD3 Formin homology 2 domain
containing 3 12–14 HeLa cells [32]

MEF2 Myocyte Enhancer Factor 2 3 Rat cardiomyocytes [93]

TNNT2 Troponin T type 2 5 Primary embryonic skeletal
muscle cultures [94]

TPM1 Tropomyosin 1 3 PAC1 smooth muscle cells [91,95]

9 Rat cardiomyocytes [93]

TPM2 Tropomyosin 2 7 HeLa cells,
rat cardiomyocytes [93,96]

TTN Titin 242 HEK293 cells [31]
a Genes underlined are commonly regulated by RBM20 and PTBP1. CM: cardiomyocytes; ESC: embryonic stem cell.

TTN is the most relevant gene regulated by RBM20 and truncating variants in titin are major
determinants of heart disease, accounting for ~30% of DCM [97]. Titin is an essential sarcomeric
component, spanning from the Z-line to M-line and being responsible for the passive elasticity of
cardiac muscle [98]. The 363 exons of the TTN gene encode for the largest mammal protein, which
is organized in modular domains consisting of ~300 immunoglobulin-like (Ig) and fibronectin-type
III (FnIII) domains, an elastic proline (P), glutamate (E), valine (V) and lysine (K) (PEVK)-rich region
in the I-band and a titin kinase (TK) domain located at the C-terminal [99,100]. The TTN pre-mRNA
undergoes numerous alternative splicing events producing several titin isoforms that are tissue-specific
and developmentally regulated. The best characterized isoforms are the cardiac and skeletal muscle
isoforms named N2A, N2B and N2BA, which differ in the sequence and extension of the I-band
domain [101]. N2B and N2BA are the two major adult cardiac titin isoforms that contribute to diastolic
passive stiffness in the myocardium [101–104]. In the course of cardiac development, the frequency of
TTN exon skipping shows a gradual increase, in favor of the shorter isoforms [105].

The shift in protein expression from the long elastic TTN isoform N2A to the short, stiff isoforms N2B
and N2BA, is coordinately regulated by alternative splicing during fetal to adult cardiac development.
N2B is the smallest of the three isoforms, with a reduced number of Ig-like domains. In the absence
of cardiac diseases N2B isoform is more expressed than N2BA [106]. The altered ratio between the
titin isoforms is associated with cardiac diseases, including DCM [107]. Several studies demonstrate
that in the absence of RBM20, the largest titin isoform, N2BA, is prevalently expressed during
heart developmental phases, including the adult heart [33,88,108,109], while RBM20 overexpression is
associated with an increased amount of the shorter, stiffer N2B isoform [33,39]. All these studies suggest
that RBM20 acts as a repressor of exon inclusion in TTN isoforms participating to the switching in the
TTN isoforms ratio N2BA:N2B during heart development and adult heart functionality (Figure 2a).

Insulin, the thyroid hormone T3 and Ang II have been demonstrated to regulate the alternatively
spliced titin isoforms, involving the PI3K/AKT signaling pathway. The PI3K/AKT/mTor kinase axis
has been shown to regulate titin isoform transition through increasing RBM20 expression [110–112].
Moreover, it has been demonstrated that the transcription factor ELK1 binds the RBM20 promoter and
support a model in which Ang II may trigger ELK1 phosphorylation through the activation of MAPK
signaling, promoting RBM20 expression [113].
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Figure 2. Schematic representation of examples of pre-mRNAs regulated by RBM20 and PTBP1.
Colored exons represent constitutively spliced exons, while white exons represent alternative exons.
(a) TTN (titin), CACNA1C (Calcium Voltage-Gated Channel Subunit Alpha1 C) and CAMK2D
(Calcium/Calmodulin Dependent Protein Kinase II Delta) are examples of pre-mRNAs regulated by
RBM20. (b) TPM1 (α-tropomyosin), TNNT2 (Troponin T2, Cardiac Type) and ACTN1 (α-actinin) are
examples of pre-mRNAs regulated by PTBP1. (c) TTN (titin) and FHOD3 (Formin Homology 2 Domain
Containing 3) are examples of pre-mRNAs regulated by both PTBP1 and RBM20.

A recent study proposes a new splicing-dependent mechanism regulated by RBM20 through
the formation of circular RNA (circRNA) [114]. CircRNAs have been classified as noncoding RNA
molecules, although recent studies demonstrate their ability to code for proteins [115]. CircRNAs are
produced by the classical spliceosome machinery that covalently binds the 5′ and 3′ ends of an exon
forming a stable single-strand RNA molecule that lack poly(A) tails [116]. It is thought that circRNAs
are co-generated with mRNAs and their formation regulates gene expression competing with mRNA
transcription to decrease the availability of linear mRNAs [117]. Khan et al. [114], exploring circRNA
expression in the cardiac tissue from patients with hypertrophic cardiomyopathy (HCM) and DCM,
identified a set of circRNAs produced by TTN. They demonstrated that RBM20 is required to produce
circRNAs from the TTN I-band, a region extensively regulated by alternative splicing.

Beside the RBM20-dependent alternative splicing of titin, the mechanism by which RBM20
regulates the expression of cardiac-specific genes has been deeply investigated in a limited number
of studies. The functional role of RBM20 has been recently analyzed in the expression of three genes



Genes 2020, 11, 402 8 of 21

known to be alternatively spliced in the heart: CACNA1C encoding voltage-dependent L-calcium
channel subunit alpha-1C (CaV1.2); CAMK2D encoding calcium/calmodulin-dependent protein kinase
type II δ (CamkIIδ) and RYR2 encoding ryanodine receptor type 2 (RyR2).

The CaV1.2 protein is a component of the pore unit of the cardiac L-type voltage-gated Ca2+

channels. In heart cells, influx of Ca2+ via CaV1.2 channels mediates excitation–contraction coupling,
controls the action potential duration and regulates gene expression [118]. Dysregulation of the
CaV1.2 activity, subcellular localization or surface density in cardiomyocytes can result in cardiac
arrhythmias and heart failure [119,120]. CaV1.2 isoforms are differentially expressed during heart
development and possess different electrophysiological properties. RBM20 overexpression in neonatal
rat cardiomyocytes promotes the inclusion of exon 9* in CACNA1C mRNA and its skipping when
RBM20 is silenced [89]. Functional data indicated that RBM20 expression affects the level of L-type
voltage-gated Ca2+ currents regulating the inclusion of exon 9*. RBM20 directly binds to consensus
sequences in the flanking intron region of exon 9* and, when overexpressed, reduces CaV1.2 membrane
surface expressions [89].

CamkIIδ is a multifunctional Ser/Thr protein kinase, which regulates excitation–contraction
coupling. In the adult heart, CamkIIδ is expressed in multiple isoforms and altered expression of
CAMK2D variants are associated with cardiac hypertrophy and heart failure [121]. The CamkIIδ
functions differ based on its nuclear or cytoplasmic localization. In the cytoplasm, CamkIIδ
phosphorylates RyR2 and phospholamban, whereas in the nucleus it associates with histone deacetylases
(HDACs) to regulate transcription factor expression [121]. The inclusion of exon 14 leads to
nuclear translocation of the CamkIIδ isoforms. Cardiomyocytes from Rbm20-/- mice show aberrant
splicing events that lead to a switch of the smallest CamkIIδ isoforms toward the biggest isoform,
CaMKII-δA, which includes exon 15 and 16, but not exon 14, thus altering their relative intracellular
distributions [122]. Similarly to CAMK2D, RBM20 regulates the expression of a nuclear Ryr2 isoform
containing an exon of 24 pb that determines its intranuclear distribution [123]. Neonatal rat Rbm20-/-
cardiomyocytes show, in fact, a shift in the expression of the RYR2 isoform containing the 24 bp
exon [122]. An interesting study by Bertero et al. [88] proposes a mechanism by which RBM20 generates
a splicing factory, selecting cardiac-specific trans-interacting domains (TIDs) located on different
chromosomes. This splicing factory regulates the alternative splicing of genes associated with the TTN
locus. They demonstrated that TTN, CACNA1C and CAMK2D are present in the RBM20-dependent
trans-acting chromatin domain and are coordinately regulated in their alternative splicing events.
They propose that the TTN pre-mRNA, due to the concentration of RBM20 target motifs, may act as a
scaffold for RBM20 foci of the TTN locus, in which selected genes, such as CACNA1C and CAMK2D,
are co-coordinately regulated. In human embryonic stem-cell-derived cardiomyocytes, the knockout
of RBM20 affects the choice of alternative exons for both the TTN-associated genes CACNA1C and
CAMK2D. RBM20 KO results in exon 9* inclusion in CACNA1C mRNA and an increased ratio of the
CaMKIIδA isoform over CaMKIIδB, which presents the inclusion of exons 14 (Figure 2a) [88]. All these
studies add new evidence in support of the critical role of RBM20 in the regulation of genes required
for heart functionality.

4.2. Role of RBM20 in Heart Diseases

Direct involvement of RBM20 in heart disease is proved by two orders of evidence. First, animal
models deficient in the expression of Rbm20 develop CDM [33,122]; secondly, RBM20 mutations
have been identified in 2–3% of familial and sporadic cases of DCM [28,30,124–127]. The mutations
identified in DCM cases are principally heterozygous missense mutations and most of them lie within
the RS-domain where a hotspot of mutations is located in the RSRSP stretch [28]. Mutations in the
TTN gene are the main cause of familial DCM [100]. Most of these mutations result in the repression of
the PEVK exons of titin, leading to the formation of the giant N2BA-G isoform enriched in DCM. The
stiffness of the myocardial wall during ventricular filling is controlled by the passive tension of the titin
protein that arise from the proper isoform ratio N2A:N2B. Rbm20-/- rats, showing an increased ratio of
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N2BA:N2B, develop DCM [33], whereas the induced expression of RBM20 in Rbm20-/- rats decreases
the N2BA:N2B ratio, thus suggesting that the reduction of RBM20 expression levels may lead to DCM
in humans. Moreover, a reduced expression of RBM20 derived by mutations or experimental knockout
models, leads to ventricular dilatation [30,33,124]. In mouse models it has been demonstrated that
heterozygous RBM20 mutations have intermediate effects on titin length, passive force and slack
sarcomere length, indicating that the amount of the wt RBM20 can be crucial for the structural and
functional properties of heart tissue [128]. The possibility of rescuing the altered ratio N2BA:N2B,
enhancing the expression of the shortest stiffer N2B isoform targeting RBM20, opens a new prospective
in developing potential therapeutic strategies.

A recent study has investigated the initial molecular aberration in RBM20-mediated DCM,
examining the effect of RBM20 point mutations using human pluripotent stem cell-derived
cardiomyocytes (hPSC-CMs) [129]. The authors induced pluripotent stem cell (iPSC), derived from
somatic cells of DCM patients harboring the RBM20 R636S missense mutation, to differentiate into
cardiomyocytes (CMs) (hiPSC-CMs). Transcriptome profiling analyses in the hiPSC-CMs confirms
that several RBM20-dependent splice variants were altered, including TTN, LDB3, CAMK2D and
CACNA1C. RBM20 hiPSC-CMs present defects in the calcium-handling machinery. In addition,
the structural assessment of RBM20 hiPSC-CMs revealed an increase in the sarcomeric length and
a decrease in the sarcomeric width. An additional cell model has been derived by iPSC-CMs from
patients harboring the S635A RBM20 missense mutation [130]. This RBM20-hiPSC-CMs present an
irregular distribution of the sarcomeric protein α-actinin and defective calcium handling. Interestingly,
the authors observed a reduction of TTN exon skipping in the PEVK region, resulting in a reduced
expression of the N2B isoform, in line with the results obtained by Bertero et al. [88], demonstrating
that RBM20 is required for the exclusion of PEVK exons. The iPSCs harboring RBM20 human
mutations offer a great opportunity for modeling heart disease in vitro. Interesting contributions on the
possibility of therapeutic application targeting RBM20 are also derived from studies on heterozygous
RBM20 KO mice. In these animal models the balance between beneficial and disadvantageous effects
derived by altered titin isoform expression, favors the positive effect of more compliant titin in the
reduction of diastolic chamber stiffness [128,131]. RBM20’s role in titin splicing regulation has also been
analyzed in relation to diastolic dysfunction, observing that reduced RBM20 activity improves diastolic
dysfunction [132]. To discover a drug that may improve cardiac elastic titin isoform expression, more
than 34,0000 small molecules have been screened in splice reporter assays. These analyses identified
cardenolides as inhibitors of RBM20-mediated titin splicing, opening the possibility to treat diastolic
heart failure by modulating titin splicing through drugs targeting RBM20 [40]. The mechanisms
that regulate the expression of RBM20 remain unclarified and the identification of factors that may
cooperate with RBM20 in splicing regulation has just started. Further studies are needed in order to
select RBM20 as an exclusive target in controlling the heart splicing network.

4.3. PTBP1 Regulated Heart Pre-mRNA

The expression level of PTBP1 is associated with neuronal development and muscle
differentiation [56,133]. Wide analyses of PTB targets in HeLa cells indicate that PTBP1 represses
many neuronal and striated muscle-specific exons in genes encoding cytoskeletal and signaling
proteins, highlighting its role in the fine regulation of protein isoform expression required for cell
differentiation [134–136]. PTBP1 generally determines the repression of selected exons in alternative
splice variants (Figure 2b). In mice, PTBP1 expression has been demonstrated to be gradually reduced
during heart development and cardiomyocyte differentiation [50].

Some aspects of the mechanism that regulates PTB expression have been partially elucidated. In
differentiating neurons, a switch between the expression of PTBP1 and the neuronal paralog PTBP2 has
been demonstrated to be driven by the neuronal micro-RNA miR-124, which downregulates PTBP1
expression, leading to a series of neuronal specific alternative splicing events [61,137]. In C2C12 cells,
a mouse myoblast cell line, the protein RBM4, has been demonstrated to promote the skipping of
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PTBP1 exon 11 as well as the skipping of neuronal PTBP2 exon 10, leading to nonsense-mediated
mRNA decay (NMD) and consequentially reducing PTBP protein levels [138]. In addition, during
differentiation of C2C12 myoblasts, the increased expression of miR-133 downregulates the expression
of PTBP2 by targeting its 3’UTR and thus altering the splicing of several mRNAs involved in muscle
maturation [62]. PTBP1 has been demonstrated to be highly expressed in the murine myocardium
during embryonic cardiac development and progressively repressed after birth [50]. In this animal
model the overexpression of PTBP1 in postnatal cardiomyocytes induces an increase in pro-apoptotic
protein expression without altering the abundance of their mRNA [50]. By means of a bicistronic
plasmid, the authors provided evidence that PTBP1 overexpression in neonatal cardiomyocytes
enhances the IRES-dependent translation, suggesting that PTBP1 may regulate the expression of
pro-apoptotic proteins, such as caspases, at the translational level. In an interesting study, using rat
primary cardiomyocytes and caspase-deficient mice, the same research group has demonstrated a novel
signaling network, involving histone deacetylases (HDACs) and caspase activity, by which PTBP1
levels are reduced during neuronal developments [93]. They propose that HDACs expression levels
may regulate the caspase activity, leading to PTBP1 cleavage and degradation by proteasomes during
cardiac development. Furthermore, they demonstrate that during cardiomyocytes differentiation, the
levels of PTBP1 regulate exon expression of the tropomyosin 1 and 2 (TPM1 and TPM2) transcript
variants. The reduced PTBP1 levels may thus influence the use of alternatively regulated exons
in heart transcript isoforms. Tropomyosin is one of the structural proteins of the thin sarcomere
filaments and it is responsible for mediating the Ca2+ control of contraction and relaxation [139].
Mutually exclusive exons of Tpm1 and Tpm2 have been previously demonstrated to be regulated by
PTBP1 [91,96,134,140,141]. Overexpression of PTBP1 in neonatal cardiomyocytes induces the exclusion
of exon 9 in TPM1 (Figure 2b) and exon 7 in TPM2. Reduction of PTBP1 during early postnatal heart
development directly correlates with the expression of TPM1 exon 9 and TPM2 exon 7 in myocardium
isoforms. Furthermore, variation of PTBP1 expression during heart development influences the
myocyte enhancer factors-2 (MEF2), determining the inclusion of exon β in Mef2a and Mef2b, which
represent the most abundant transcript variants in the adult heart [93].

PTBP1 regulates the alternative splicing of two additional pre-mRNAs relevant for cardiomyocyte
function, Troponin-T (TNNT2) and α-actinin (ACTN1) [90,94]. TNNT2 mediates muscle contraction in
response to calcium ion dynamics. Mutations in the TNNT2 gene have been associated with multiple
types of cardiomyopathy [142]. The cardiac troponin T (cTNT) pre-mRNA contains a single alternative
exon, exon 5, which introduces an additional 10 amino acids in the protein sequence, conferring a
higher sensibility to calcium [143]. Exon 5 is predominantly included in mRNAs produced in the
embryonic heart, while it is excluded in the adult heart [144]. Intronic Muscle Specific Elements
(MSEs) required for exon inclusion in embryonic skeletal muscle culture are located upstream and
downstream of exon 5. Charlet-B et al. [94] demonstrated that PTBP1 represses the exon 5 inclusion
of TNNT2 in an MSE-dependent manner, in primary embryonic skeletal muscle cultures (Figure 2b).
In cardiomyocytes, PTBP1 and muscleblind-like (MBNL) proteins have been proposed to antagonize
the effect of CUG-binding protein (CUG-BP) and ETR-3-like factor (CELF) RNA binding proteins,
regulating cTNT exon 5 skipping [145].

The actin-crosslinking proteinα-actinin 1, encoded by the ACTN1 gene, is a homodimeric molecule
that contains three functional domains: an N-terminal region containing two actin-binding motifs,
a central dimer-forming sequence with four spectrin-like domains and a C-terminal region with two
EF hand motifs. Biochemical data have provided evidence that binding of ACTN1 to actin is controlled
by the first EF hand motif [146]. Different tissues express at least two isoforms of ACTN1 that differ in
the expression of tissue-specific, alternative splicing of mutually exclusive exons. The non-muscle exon
(NM) codes for 27 amino acids that form the C-terminus of the first EF hand, while smooth muscle cells
contain a specific exon (SM) that codes for 22 different amino acids. In vitro experiments by depletion
and rescue of PTBP1 expression showed that PTBP1 regulates the alternative splicing of the α-actinin
mutually exclusive SM and NM exons [90,91,147]. PTBP1 induces the exclusion of the α-actinin SM
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exon in the majority of the variants expressed in non-smooth muscle cells (non-SM cells), leading to the
inclusion of the alternative upstream NM exon, whereas in smooth muscle cells PTBP1 determines the
exclusion of both SM and NM exons (Figure 2b). In a mouse model of cardiac hypertrophy, the level
of PTBP1 expression, as well as epithelial splicing regulatory proteins (ESRP1) and SF2/ASF splicing
factors, have been observed to be significantly altered [148], suggesting that the imbalance amount of
these splicing factors may lead to a disequilibrium in the expression of tissue-specific regulated genes.

4.4. RBM20 and PTBP1 Combinatorial Effects on Alternative Splicing

The balance between splicing activation and repression mediated by splicing factors, as well as
the combinatorial effect of RNA-binding competition or promotion are expected to play a crucial role
in directing regulated alternative splicing events in tissues differentiation. A study that investigated
the molecular bases of TTN exon exclusion regulated by RBM20, using a splicing reporter and in vitro
binding assay, demonstrated that the PTBP1 isoform PTB4 regulates titin splicing [31]. PTB4 may
counteract the RBM20 splicing repressor activity, binding the same consensus motif on the 5′ splice site
(5′SS), located downstream of the TTN 242 alternative exon (Figure 2c). Binding of both PTB4 and
RBM20 to the downstream intron may differentially interfere with U1 snRNP, favoring the inclusion of
the alternative exon [31].

We recently investigated the involvement of RBM20 and PTBP1 in the regulation of the alternative
splicing of the formin homology 2 domain containing 3 (FHOD3) protein, an RNA-seq-predicted
RBM20 target [33]. FHOD3 is a sarcomeric protein expressed in the cardiac tissue that regulates actin
dynamics [149,150]. Mutations in the human FHOD3 gene have been associated with hypertrophic
cardiomyopathy (HCM) and DCM [151,152]. We found that both RBM20 and PTBP1 influence
the balance of the FHOD3 splicing pattern, promoting the skipping of exons 12, 13 and 14
(Figure 2c). Furthermore, we observed a positive correlation between FHOD3 exon 12 skipping
and the overexpression of RBM20 or PTBP1. We hypothesize that they both participate in the splice
site recognition by competing with the snRNP spliceosomal components that determine the exon
inclusion/exclusion outcome [32].

It is interesting to note that RBM20 and PTBP1 expression are inversely correlated during
heart development. While RBM20 expression increases during heart development, PTBP1 levels
are reduced [50,93,153]. We may expect that a regulatory mechanism participates in the dynamic
of the temporal switch of RBM20 and PTBP1 expression during heart differentiation, inhibiting the
expression of the ubiquitous PTBP1 in favor of a more selective and tissue-specific RBM20 splicing
factor (Figure 3). Further studies can address the knowledge gap on how these factors may cooperate to
control heart-specific gene expression during differentiation and heart disease development. Moreover,
it will be interesting to explore the combined role of the PTBP1 co-factors, such as Raver1 and Raver2,
as well as additional splicing factors, such as CELF, MBNL, Rbfox and SF3B1 in regulating the splicing
events in cardiac variants.Genes 2019, 10, x FOR PEER REVIEW 12 of 21 
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4.5. RBM20 and RBM24 Cooperation in Alternative Splicing

Other than RBM20 and PTBP1, additional splicing factors are known to be specifically involved in
the regulation of splicing events required for heart muscular functionality, which include (MBNL1),
CUG-binding protein 1 (CUGBP1), RNA-binding protein fox homolog 1 (RBFOX1) and RNA-binding
motif protein 24 (RBM24) [29]. Mutations affecting their expression and functionality have been
identified in HCM, DCM and heart failure [154–156]. An interesting functional cooperation between
RBM20 and RBM24 have been recently demonstrated. RBM20 together with RBM24 promotes the
inclusion of exon 11 of Enigma homolog (ENH) protein, resulting in the shorter ENH splice variants.
These shorter isoforms, lacking LIM domains, are suggested to prevent HCM [157]. RBM24 is required
for normal heart development, and when knocked out, causes early mice death [51,158,159]. In animal
models, RBM24 is required for sarcomere assembly and heart contractility [160]. Recently, Liu et
al. [161] showed that RBM24 deletion in a mouse model resulted in the missplicing of several genes
coding for sarcomere structure proteins, such as Tpm2, Ttn, Nebl, Fhod3, Enah and Ablim1. These
authors provide evidence that RBM24 binds Ttn pre-mRNA, altering the expression of the cardiac
isoforms. In their model the knockout of RBM24 in the postnatal heart leads to rapidly progressive
DCM, heart failure and postnatal lethality. A commentary on this study evidenced that RBM24
mutations in human cardiomyopathy patients might be a rare event due to the absence of RBM24
mutations associated with human disease [162]. In rat cardiomyocytes, RBM20 and RBM24 have been
also demonstrated to cooperate to regulate the splicing events in the scaffold proteins expressed by the
Eng gene. Both proteins promote the expression of the Eng isoforms lacking the LIM domain, which
prevented cardiomyocyte hypertrophy in a mouse model [157,163]. A similar cooperation between
RBM24 and PTBP1 has been proposed for exon inclusion in splicing variants, suggesting that the
balance between tissue-specific splicing factors, such as RBM24, and the widespread expressed factors,
such as PTBP1, plays a critical role in controlling splicing events [158].

5. Conclusions and Future Perspectives

Global transcriptomic studies have evidenced the role of RBM20 in the regulation of expressed
splicing isoforms in heart tissues and functional studies are actually deciphering the mechanism
of specific RBM20 target exon regulation. Since the mechanisms of alternative splicing regulation
are now more extensively investigated, the tissue-specific splicing patterns are beginning to be
unraveled. However, additional studies are required to define the complexity of exon regulation
in heart development. The identification of key splicing factors, such as RBM20 and PTBP1 and
their function in the heart, is now contributing to insights into the mechanisms that lead to heart
disease. Advances in high-throughput sequence technologies and computational algorithms for
data analysis have expanded the effectiveness in investigating the complex splicing network active
in heart development and differentiation. However, functional analyses of the expressed isoforms,
as well as their role and combinatorial action on alternative splicing, are essential to demonstrate
the consequences of potential splice-disrupting mutations. Recent studies on reprogrammed iPS
cells are contributing to identifying the temporal steps that drive, by alternative splicing, the tissue
differentiation and represent a promising model to recapitulate tissue-specific isoform expression.
Besides, improving the detection of splicing events and the identification of the RNA consensus
sequences recognized by splicing factors, may provide the bases for the development of RNA-targeted
therapies suitable for heart diseases, such as splice-switching antisense oligonucleotides or short
interfering RNAs. It will be of interest to investigate the role of splicing events regulating noncoding
RNAs, as well as to develop 3D heart organoids to decipher the splicing code of heart development
and cardiomyopathies based on alterations in titin function. The next challenge in developing heart
disease therapies will be extending functional studies to clarify the effect of human mutations in the
alternative isoforms regulated by the splicing machinery in the heart.
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