115 research outputs found

    Authenticity of Ecuadorian Commercial Honeys

    Get PDF
    Control of honey frauds is needed in Ecuador to protect bee keepers and consumers because simple syrups and new syrups with eucalyptus are sold as genuine honeys. Authenticity of Ecuadorian commercial honeys was tested with a vortex emulsion consisting on one volume of honey:water (1:1) dilution, and two volumes of diethyl ether. This method allows a separation of phases in one minute to discriminate genuine honeys that form three phase and fake honeys that form two phases; 34 of the 42 honeys analyzed from five provinces of Ecuador were genuine. This was confirmed with 1H NMR spectra of honey dilutions in deuterated water with an enhanced amino acid region with signals for proline, phenylalanine and tyrosine. Classic quality indicators were also tested with this method (sugars, HMF), indicators of fermentation (ethanol, acetic acid), and residues of citric acid used in the syrup manufacture. One of the honeys gave a false positive for genuine, being an admixture of genuine honey with added syrup, evident for the high sucrose. Sensory analysis was the final confirmation to recognize the honey groups studied here, namely honey produced in combs by Apis mellifera, fake honey, and honey produced in cerumen pots by Geotrigona, Melipona, and Scaptotrigona. Chloroform extractions of honey were also done to search lipophilic additives in NMR spectra. This is a valuable contribution to protect honey consumers, and to develop the beekeeping industry in Ecuador

    Quantification of caffeine in human saliva by Nuclear Magnetic Resonance as analternative method for cytochrome CYP1A2 phenotyping

    Get PDF
    The first step in caffeine metabolism is mediated for over 95% by the CYP1A2 isoform of cytochrome P450. Therefore, CYP1A2 activity is most conveniently measured through the determination of caffeine clearance. The HPLC quantification of caffeine is fully validated and is the most widely used method. It can be performed on saliva, which is gaining importance as a diagnostic biofluid and permits easy and low invasive sampling. Here, we present a quantitative H-1 nuclear magnetic resonance (NMR) method to determine caffeine in human saliva. The procedure is simple because it involves only an ultra-filtration step and a direct extraction in a deuterated solvent, yielding a matrix that is then analyzed. The reliability of this NMR method was demonstrated in terms of linearity, accuracy, recovery, and limits of detection (LoD). Good precision (relative standard deviation, RSD 95% and LoD of 6.8. 10(-7) mol L-1 were obtained. The method was applied to samples collected from different volunteers over 24 h following a single oral dose of about 100 mg of caffeine administered with either coffee beverage or a capsule

    Entomological Origin of Honey Discriminated by NMR Chloroform Extracts in Ecuadorian Honey

    Get PDF
    Honeys are produced by Apis mellifera and stingless bees (Meliponini) in Ecuador. We studied honey produced in beeswax combs by Apis mellifera, and honey produced in pots by Geotrigona and Scaptotrigona bees. Chloroform extracts of honey were obtained for fast NMR spectra. The 1D spectra were acquired at 298 K, with a 600 MHz NMR Bruker instrument, using a modified double pulsed field gradient spin echoes (DPFGSE) sequence. Signals of 1H NMR spectra were integrated and used as inputs for PCA, PLS-DA analysis, and labelled sets of classes were successfully identified, enhancing the separation between the three groups of honey according to the entomological origin: A. mellifera, Geotrigona and Scaptotrigona. This procedure is therefore recommended for authenticity test of honey in Ecuador

    Flooding Responses on Grapevine: A Physiological, Transcriptional, and Metabolic Perspective

    Get PDF
    Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted. A preliminary experiment under hydroponic conditions enabled the identification of transiently and steadily regulated hypoxia-responsive marker genes and drafting a model for response to oxygen deprivation in grapevine roots. Afterward, over two consecutive vegetative seasons, flooding was imposed to potted vines during the late dormancy period, to mimick the most frequent waterlogging events occurring in the field. Untargeted transcriptomic and metabolic profiling approaches were applied to investigate early responses of grapevine roots during exposure to hypoxia and subsequent recovery after stress removal. The initial hypoxic response was marked by a significant increase of the hypoxia-inducible metabolites ethanol, GABA, succinic acid and alanine which remained high also 1 week after recovery from flooding with the exception of ethanol that leveled off. Transcriptomic data supported the metabolic changes by indicating a substantial rearrangement of primary metabolic pathways through enhancement of the glycolytic and fermentative enzymes and of a subset of enzymes involved in the TCA cycle. GO and KEGG pathway analyses of differentially expressed genes showed a general down-regulation of brassinosteroid, auxin and gibberellin biosynthesis in waterlogged plants, suggesting a general inhibition of root growth and lateral expansion. During recovery, transcriptional activation of gibberellin biosynthetic genes and down-regulation of the metabolic ones may support a role for gibberellins in signaling grapevine rootstocks waterlogging metabolic and hormonal changes to the above ground plant. The significant internode elongation measured upon budbreak during recovery in plants that had experienced flooding supported this hypothesis. Overall integration of these data enabled us to draft a first comprehensive view of the molecular and metabolic pathways involved in grapevine\u2019s root responses highlighting a deep metabolic and transcriptomic reprogramming during and after exposure to waterlogging

    Flooding Responses on Grapevine: A Physiological, Transcriptional, and Metabolic Perspective

    Get PDF
    Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted. A preliminary experiment under hydroponic conditions enabled the identification of transiently and steadily regulated hypoxia-responsive marker genes and drafting a model for response to oxygen deprivation in grapevine roots. Afterward, over two consecutive vegetative seasons, flooding was imposed to potted vines during the late dormancy period, to mimick the most frequent waterlogging events occurring in the field. Untargeted transcriptomic and metabolic profiling approaches were applied to investigate early responses of grapevine roots during exposure to hypoxia and subsequent recovery after stress removal. The initial hypoxic response was marked by a significant increase of the hypoxia-inducible metabolites ethanol, GABA, succinic acid and alanine which remained high also 1 week after recovery from flooding with the exception of ethanol that leveled off. Transcriptomic data supported the metabolic changes by indicating a substantial rearrangement of primary metabolic pathways through enhancement of the glycolytic and fermentative enzymes and of a subset of enzymes involved in the TCA cycle. GO and KEGG pathway analyses of differentially expressed genes showed a general down-regulation of brassinosteroid, auxin and gibberellin biosynthesis in waterlogged plants, suggesting a general inhibition of root growth and lateral expansion. During recovery, transcriptional activation of gibberellin biosynthetic genes and down-regulation of the metabolic ones may support a role for gibberellins in signaling grapevine rootstocks waterlogging metabolic and hormonal changes to the above ground plant. The significant internode elongation measured upon budbreak during recovery in plants that had experienced flooding supported this hypothesis. Overall integration of these data enabled us to draft a first comprehensive view of the molecular and metabolic pathways involved in grapevine’s root responses highlighting a deep metabolic and transcriptomic reprogramming during and after exposure to waterlogging

    Performance Assessment in Fingerprinting and Multi Component Quantitative NMR Analyses

    Get PDF
    An interlaboratory comparison (ILC) was organized with the aim to set up quality control indicators suitable for multicomponent quantitative analysis by nuclear magnetic resonance (NMR) spectroscopy. A total of 36 NMR data sets (corresponding to 1260 NMR spectra) were produced by 30 participants using 34 NMR spectrometers. The calibration line method was chosen for the quantification of a five-component model mixture. Results show that quantitative NMR is a robust quantification tool and that 26 out of 36 data sets resulted in statistically equivalent calibration lines for all considered NMR signals. The performance of each laboratory was assessed by means of a new performance index (named Qp-score) which is related to the difference between the experimental and the consensus values of the slope of the calibration lines. Laboratories endowed with a Qp-score falling within the suitable acceptability range are qualified to produce NMR spectra that can be considered statistically equivalent in terms of relative intensities of the signals. In addition, the specific response of nuclei to the experimental excitation/relaxation conditions was addressed by means of the parameter named NR. NR is related to the difference between the theoretical and the consensus slopes of the calibration lines and is specific for each signal produced by a well-defined set of acquisition parameters

    Utilizzo di adattogeni di origine naturale dall'etĂ  pediatrica all'adolescenza

    No full text
    I principali adattogeni presenti nel mercato. PotenzialitĂ , efficacia, rischi, utilizzo di ciascuna droga sia in etĂ  pediatrica sia nella fase dell'adolescenz

    Quantification of polyols in sugar-free foodstuffs by qNMR

    No full text
    We present a qNMR method for the determination of low calories sweeteners (erythritol, mannitol, maltitol, sorbitol, isomalt and xylitol) in sugar-free foodstuff. The structural similarities of these compounds determine often a severe spectral overlap that hampers their quantification via conventional 1D and 2D NMR spectra. This problem is here overcome by exploiting the resolving capabilities of the CSSF-TOCSY experiment, allowing the quantification of all six polyols, with satisfactory results in terms of LoQ (2.8-7.4 mg/L for xylitol, mannitol, sorbitol, 15 mg/L for erythritol, 38 mg/L for maltitol and 91 mg/L for isomalt), precision (RSD% 0.40-4.03), trueness (bias% 0.15-4.81), and recovery (98-104%). Polyol's quantification in different sugar-free confectionary products was performed after a simple water extraction without any additional sample treatment. While these results demonstrate the robustness of the proposed method for polyols quantification in low calories foods, its applicability can be further extended to other food matrices or biofluids
    • …
    corecore