203 research outputs found

    Mutated Ptpn11 alters leukemic stem cell frequency and reduces the sensitivity of acute myeloid leukemia cells to Mcl1 inhibition

    Get PDF
    PTPN11 encodes the Shp2 non-receptor protein-tyrosine phosphatase implicated in several signaling pathways. Activating mutations in Shp2 are commonly associated with juvenile myelomonocytic leukemia but are not as well defined in other neoplasms. Here we report that Shp2 mutations occur in human acute myeloid leukemia (AML) at a rate of 6.6% (6/91) in the ECOG E1900 data set. We examined the role of mutated Shp2 in leukemias harboring MLL translocations, which co-occur in human AML. The hyperactive Shp2E76K mutant, commonly observed in leukemia patients, significantly accelerated MLL-AF9-mediated leukemogenesis in vivo. Shp2E76K increased leukemic stem cell frequency and affords MLL-AF9 leukemic cells IL3 cytokine hypersensitivity. As Shp2 is reported to regulate anti-apoptotic genes, we investigated Bcl2, Bcl-xL and Mcl1 expression in MLL-AF9 leukemic cells with and without Shp2E76K. Although the Bcl2 family of genes was upregulated in Shp2E76K cells, Mcl1 showed the highest upregulation in MLL-AF9 cells in response to Shp2E76K. Indeed, expression of Mcl1 in MLL-AF9 cells phenocopies expression of Shp2E76K, suggesting Shp2 mutations cooperate through activation of anti-apoptotic genes. Finally, we show Shp2E76K mutations reduce sensitivity of AML cells to small-molecule-mediated Mcl1 inhibition, suggesting reduced efficacy of drugs targeting MCL1 in patients with hyperactive Shp2

    Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL

    Get PDF
    The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL)(1,2). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL

    Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia

    No full text
    Analysis of 3D chromatin architecture in T-ALL identifies differences in intra-TAD interactions and TAD boundary insulation. Inhibition of oncogenic signal transduction or epigenetic regulation can alter specific 3D interactions. Differences in three-dimensional (3D) chromatin architecture can influence the integrity of topologically associating domains (TADs) and rewire specific enhancer-promoter interactions, impacting gene expression and leading to human disease. Here we investigate the 3D chromatin architecture in T cell acute lymphoblastic leukemia (T-ALL) by using primary human leukemia specimens and examine the dynamic responses of this architecture to pharmacological agents. Systematic integration of matched in situ Hi-C, RNA-seq and CTCF ChIP-seq datasets revealed widespread differences in intra-TAD chromatin interactions and TAD boundary insulation in T-ALL. Our studies identify and focus on a TAD 'fusion' event associated with absence of CTCF-mediated insulation, enabling direct interactions between the MYC promoter and a distal super-enhancer. Moreover, our data also demonstrate that small-molecule inhibitors targeting either oncogenic signal transduction or epigenetic regulation can alter specific 3D interactions found in leukemia. Overall, our study highlights the impact, complexity and dynamic nature of 3D chromatin architecture in human acute leukemia

    Independent Prognostic Significance of Monosomy 17 and Impact of Karyotype Complexity in Monosomal Karyotype/Complex Karyotype Acute Myeloid Leukemia: Results from Four ECOG-ACRIN Prospective Therapeutic Trials

    Get PDF
    The presence of a monosomal karyotype (MK+) and/or a complex karyotype (CK+) identifies subcategories of AML with poor prognosis. The prognostic significance of the most common monosomies (monosomy 5, monosomy 7, and monosomy 17) within MK+/CK+ AML is not well defined. We analyzed data from 1,592 AML patients age 17–93 years enrolled on ECOG-ACRIN therapeutic trials. The majority of MK+ patients (182/195; 93%) were MK+/CK+ with 87% (158/182) having ≥5 clonal abnormalities (CK≥ 5). MK+ patients with karyotype complexity ≤4 had a median overall survival (OS) of 0.4y compared to 1.0y for MK- with complexity ≤4 (p < 0.001), whereas no OS difference was seen in MK+ vs. MK- patients with CK≥ 5 (p = 0.82). Monosomy 5 (93%; 50/54) typically occurred within a highly complex karyotype and had no impact on OS (0.4y; p = 0.95). Monosomy 7 demonstrated no impact on OS in patients with CK≥ 5 (p = 0.39) or CK ≤ 4 (p = 0.44). Monosomy 17 appeared in 43% (68/158) of CK≥ 5 patients and demonstrated statistically significant worse OS (0.4y) compared to CK≥ 5 patients without monosomy 17 (0.5y; p = 0.012). Our data suggest that the prognostic impact of MK+ is limited to those with less complex karyotypes and that monosomy 17 may independently predict for worse survival in patients with AML

    An Integrative Genomic and Epigenomic Approach for the Study of Transcriptional Regulation

    Get PDF
    The molecular heterogeneity of acute leukemias and other tumors constitutes a major obstacle towards understanding disease pathogenesis and developing new targeted-therapies. Aberrant gene regulation is a hallmark of cancer and plays a central role in determining tumor phenotype. We predicted that integration of different genome-wide epigenetic regulatory marks along with gene expression levels would provide greater power in capturing biological differences between leukemia subtypes. Gene expression, cytosine methylation and histone H3 lysine 9 (H3K9) acetylation were measured using high-density oligonucleotide microarrays in primary human acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL) specimens. We found that DNA methylation and H3K9 acetylation distinguished these leukemias of distinct cell lineage, as expected, but that an integrative analysis combining the information from each platform revealed hundreds of additional differentially expressed genes that were missed by gene expression arrays alone. This integrated analysis also enhanced the detection and statistical significance of biological pathways dysregulated in AML and ALL. Integrative epigenomic studies are thus feasible using clinical samples and provide superior detection of aberrant transcriptional programming than single-platform microarray studies

    Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukemia

    Get PDF
    Chromosomal rearrangements are initiating events in acute lymphoblastic leukaemia (ALL). Here using RNA sequencing of 560 ALL cases, we identify rearrangements between MEF2D (myocyte enhancer factor 2D) and five genes (BCL9, CSF1R, DAZAP1, HNRNPUL1 and SS18) in 22 B progenitor ALL (B-ALL) cases with a distinct gene expression profile, the most common of which is MEF2DBCL9. Examination of an extended cohort of 1,164 B-ALL cases identified 30 cases with MEF2D rearrangements, which include an additional fusion partner, FOXJ2; thus, MEF2D-rearranged cases comprise 5.3% of cases lacking recurring alterations. MEF2D-rearranged ALL is characterized by a distinct immunophenotype, DNA copy number alterations at the rearrangement sites, older diagnosis age and poor outcome. The rearrangements result in enhanced MEF2D transcriptional activity, lymphoid transformation, activation of HDAC9 expression and sensitive to histone deacetylase inhibitor treatment. Thus, MEF2D-rearranged ALL represents a distinct form of high-risk leukaemia, for which new therapeutic approaches should be considered.This work was supported in part by the American Lebanese Syrian Associated Charities of St. Jude Children’s Research Hospital; by a Stand Up to Cancer Innovative Research Grant and St. Baldrick’s Foundation Scholar Award (to C.G.M.); by a St. Baldrick’s Consortium Award (S.P.H.), by a Leukemia and Lymphoma Society Specialized Center of Research grant (S.P.H. and C.G.M.), by a Lady Tata Memorial Trust Award (I.I.), by a Leukemia and Lymphoma Society Special Fellow Award and Alex’s Lemonade Stand Foundation Young Investigator Awards (K.R.), by an Alex’s Lemonade Stand Foundation Award (M.L.) and by National Cancer Institute Grants CA21765 (St Jude Cancer Center Support Grant), U01 CA157937 (C.L.W. and S.P.H.), U24 CA114737 (to Dr Gastier-Foster), NCI Contract HHSN261200800001E (to Dr Gastier-Foster), U10 CA180820 (ECOG-ACRIN Operations) and CA180827 (E.P.); U10 CA180861 (C.D.B. and G.M.); U24 CA196171 (The Alliance NCTN Biorepository and Biospecimen Resource); CA145707 (C.L.W. and C.G.M.); and grants to the COG: U10 CA98543 (Chair’s grant and supplement to support the COG ALL TARGET project), U10 CA98413 (Statistical Center) and U24 CA114766 (Specimen Banking). This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract Number HHSN261200800001E

    Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia

    Get PDF
    T-cell acute lymphoblastic leukaemia (T-ALL) is a haematological malignancy with a dismal overall prognosis, including a relapse rate of up to 25%, mainly because of the lack of non-cytotoxic targeted therapy options. Drugs that target the function of key epigenetic factors have been approved in the context of haematopoietic disorders, and mutations that affect chromatin modulators in a variety of leukaemias have recently been identified; however, ‘epigenetic’ drugs are not currently used for T-ALL treatment. Recently, we described that the polycomb repressive complex 2 (PRC2) has a tumour-suppressor role in T-ALL. Here we delineated the role of the histone 3 lysine 27 (H3K27) demethylases JMJD3 and UTX in T-ALL. We show that JMJD3 is essential for the initiation and maintenance of T-ALL, as it controls important oncogenic gene targets by modulating H3K27 methylation. By contrast, we found that UTX functions as a tumour suppressor and is frequently genetically inactivated in T-ALL. Moreover, we demonstrated that the small molecule inhibitor GSKJ4 (ref. 5) affects T-ALL growth, by targeting JMJD3 activity. These findings show that two proteins with a similar enzymatic function can have opposing roles in the context of the same disease, paving the way for treating haematopoietic malignancies with a new category of epigenetic inhibitors.National Institutes of Health (U.S.) (Grant R37-HD04502
    • …
    corecore