102 research outputs found

    Conversión de aceites usados en fritura en biogasoil mediante hidrodeoxigenación catalítica

    Get PDF
    La hidrodeoxigenación catalítica (HDO) de aceites vegetales a alta temperatura y presión de H2 ha demostrado ser una metodología conveniente para la obtención de combustibles líquidos renovables (denominados “biogasoil”) constituidos por hidrocarburos (HC) de composición y propiedades muy similares a las del diesel derivado del petróleo. En este trabajo, los aceites de descarte provenientes de la fritura de alimentos (WFO) fueron procesados en un reactor Parr 4570HP/HT de 250 mL, a 350 °C y 100 bar de H2 durante 4 h, en presencia de catalizadores de PtO2, NiMo/Al2O3 comercial y éste sulfurado (S-NiMo/Al2O3). La sulfuración se realizó mediante el tratamiento del catalizador NiMo/Al2O3 en un reactor tubular bajo flujo de H2 enriquecido en DMDS y temperatura convenientemente programada. Cuando un aceite refinado fue sometido a la HDO en presencia de 0,48 % de PtO2 se obtuvo un producto conteniendo 93 % de hidrocarburos y 4,5 % de FFA. Mientras que cuando se procesó en idénticas condiciones un WFO conteniendo 51 % de compuestos polares y 2,9 % de polímeros, el producto presentó 48 y 24 % de HC y FFA, respectivamente. Mientras que el procesamiento del WFO con NiMo/Al2O3 no produjo hidrocarburos, cuando se lo trató en presencia de 1,4% de S-NiMo/Al2O3 se obtuvo un producto con 95 % de HC y sólo 0,6 % de FFA. Estos resultados indican que aceites de descarte provenientes de la fritura de alimentos pueden ser eficientemente convertidos a biogasoil mediante HDO utilizando un catalizador comercial de NIMO, de relativo bajo costo, previamente sulfurado.Agencia Nacional de Investigación e Innovació

    The GSK3\u3b2 inhibitor BIS I reverts YAP-dependent EMT signature in PDAC cell lines by decreasing SMADs expression level

    Get PDF
    The Yes-associated protein, YAP, is a transcriptional co-activator, mediating the Epithelial to Mesenchymal Transition program in pancreatic ductal adenocarcinoma (PDAC). With the aim to identify compounds that can specifically modulate YAP functionality in PDAC cell lines, we performed a small scale, drug-based screening experiment using YAP cell localization as the read-out. We identified erlotinib as an inducer of YAP cytoplasmic localization, an inhibitor of the TEA luciferase reporter system and the expression of the bona fide YAP target gene, Connective Tissue Growth Factor CTGF. On the other hand, BIS I, an inhibitor of PKC\u3b4 and GSK3\u3b2, caused YAP accumulation into the nucleus. Activation of \u3b2-catenin reporter and interfering experiments show that inhibition of the PKC\u3b4/GSK3\u3b2 pathway triggers YAP nuclear accumulation inducing YAP/TEAD transcriptional response. Inhibition of GSK3\u3b2 by BIS I reduced the expression levels of SMADs protein and reduced YAP contribution to EMT. Notably, BIS I reduced proliferation, migration and clonogenicity of PDAC cells in vitro, phenocopying YAP genetic down-regulation. As shown by chromatin immunoprecipitation experiments and YAP over-expressing rescue experiments, BIS I reverted YAP-dependent EMT program by modulating the expression of the YAP target genes E-cadherin, vimentin, CTGF and of the newly identified target, CD133. In conclusion, we identified two different molecules, erlotinib and BIS I, modulating YAP functionality although via different mechanisms of action, with the second one specifically inhibiting the YAP-dependent EMT program in PDAC cell lines

    Establishment of a Duchenne muscular dystrophy patient-derived induced pluripotent stem cell line carrying a deletion of exons 51–53 of the dystrophin gene (CCMi003-A)

    Get PDF
    Abstract Duchenne's muscular dystrophy (DMD) is a neuromuscular disorder affecting skeletal and cardiac muscle function, caused by mutations in the dystrophin (DMD) gene. Dermal fibroblasts, isolated from a DMD patient with a reported deletion of exons 51 to 53 in the DMD gene, were reprogrammed into induced pluripotent stem cells (iPSCs) by electroporation with episomal vectors containing the reprogramming factors: OCT4, SOX2, LIN28, KLF4, and L-MYC. The obtained iPSC line showed iPSC morphology, expression of pluripotency markers, possessed trilineage differentiation potential and was karyotypically normal

    Derivation of the Duchenne muscular dystrophy patient-derived induced pluripotent stem cell line lacking DMD exons 49 and 50 (CCMi001DMD-A-3, ∆ 49, ∆ 50)

    Get PDF
    Abstract Duchenne muscular dystrophy (DMD) is caused by abnormalities in the dystrophin gene and is clinically characterised by childhood muscle degeneration and cardiomyopathy. We produced an induced pluripotent stem cell line from a DMD patient's dermal fibroblasts by electroporation with episomal vectors containing: hL-MYC, hLIN28, hSOX2, hKLF4, hOCT3/4. The resultant DMD iPSC line (CCMi001DMD-A-3) displayed iPSC morphology, expressed pluripotency markers, possessed trilineage differentiation potential and was karyotypically normal. MLPA analyses performed on DNA extracted from CCMi001DMD-A-3 showed a deletion of exons 49 and 50 (CCMi001DMD-A-3, ∆ 49, ∆ 50)

    Generation of induced pluripotent stem cells from a Becker muscular dystrophy patient carrying a deletion of exons 45-55 of the dystrophin gene (CCMi002BMD-A-9 ∆45-55)

    Get PDF
    Abstract Becker muscular dystrophy (BMD) is a dystrophinopathy caused by mutations in the dystrophin gene on chromosome Xp21. BMD mutations result in truncated semi-functional dystrophin isoforms. Consequently, less severe clinical symptoms become apparent later in life compared to Duchenne muscular dystrophy. Dermal fibroblasts from a BMD patient were electroporated with episomal plasmids containing reprogramming factors to create the induced pluripotent stem cell line: CCMi002BMD-A-9 that showed pluripotent markers, were karyotypically normal and capable of trilineage differentiation. MLPA analyses performed on DNA extracted from CCMi002BMD-A-9 showed an in-frame deletion of exons 45 to 55 (CCMi002BMD-A-9 Δ45-55)

    Red blood cell distribution width as a novel prognostic marker after myocardial revascularization or cardiac valve surgery

    Get PDF
    The red blood cell distribution width (RDW) measures the variability in the size of circulating erythrocytes. Previous studies suggested a powerful correlation between RDW obtained from a standard complete blood count and cardiovascular diseases in both primary and secondary cardiovascular prevention. The current study aimed to evaluate the prognostic role of RDW in patients undergoing cardiac rehabilitation after myocardial revascularization and/or cardiac valve surgery. The study included 1.031 patients with available RDW levels, prospectively followed for a mean of 4.5 +/- 3.5 years. The mean age was 68 +/- 12 years, the mean RDW was 14.7 +/- 1.8%; 492 patients (48%) underwent cardiac rehabilitation after myocardial revascularization, 371 (36%) after cardiac valve surgery, 102 (10%) after valve-plus-coronary artery by-pass graft surgery, 66 (6%) for other indications. Kaplan-Meier analysis and Cox hazard analysis were used to associate RDW with mortality. Kaplan-Meier analysis demonstrated worse survival curves free from overall (log-rank p<0.0001) and cardiovascular (log-rank p<0.0001) mortality in the highest RDW tertile. Cox analysis showed RDW levels correlated significantly with the probability of overall (HR 1.26; 95% CI 1.19-1.32; p<0.001) and cardiovascular (HR 1.31; 95% CI 1.23-1.40; p<0.001) mortality. After multiple adjustments for cardiovascular risk factors, hemoglobin, hematocrit, C-reactive protein, microalbuminuria, atrial fibrillation, glomerular filtration rate,left ventricular ejection fraction and number of exercise training sessions attended, the increased risk of overall (HR 1.10; 95% CI 1.01-1.27; p=0.039) and cardiovascular (HR 1.13; 95% CI 1.01-1.34; p=0.036)mortality with increasing RDW values remained significant. The RDW represents an independent predictor of overall and cardiovascular mortality in secondary cardiovascular prevention patients undergoing cardiac rehabilitation

    Impact of reboxetine plus oxybutynin treatment for obstructive sleep apnea on cardiovascular autonomic modulation

    Get PDF
    The combination of noradrenergic (reboxetine) plus antimuscarinic (oxybutynin) drugs (reb-oxy) reduced obstructive sleep apnea (OSA) severity but no data are available on its effects on cardiac autonomic modulation. We sought to evaluate the impact of 1-week reb-oxy treatment on cardiovascular autonomic control in OSA patients. OSA patients were randomized to a double-blind, crossover trial comparing 4 mg reboxetine plus 5 mg oxybutynin to a placebo for OSA treatment. Heart rate (HR) variability (HRV), ambulatory blood pressure (BP) monitoring (ABPM) over 24 h baseline and after treatment were performed. Baroreflex sensitivity was tested over beat-to-beat BP recordings. 16 subjects with (median [interquartile range]) age 57 [51–61] years and body mass index 30 [26–36]kg/m2 completed the study. The median nocturnal HR was 65 [60–69] bpm at baseline and increased to 69 [64–77] bpm on reb-oxy vs 66 [59–70] bpm on placebo (p = 0.02). The mean 24 h HR from ABPM was not different among treatment groups. Reb-oxy administration was not associated with any modification in HRV or BP. Reb-oxy increased the baroreflex sensitivity and did not induce orthostatic hypotension. In conclusion, administration of reb-oxy did not induce clinically relevant sympathetic overactivity over 1-week and, together with a reduction in OSA severity, it improved the baroreflex function

    Dietary Supplementation with Goji Berries (Lycium barbarum) Modulates the Microbiota of Digestive Tract and Caecal Metabolites in Rabbits

    Get PDF
    Simple Summary The microbial community that inhabits specific areas of the body, developing a symbiotic relationship with the host, is termed the microbiota. The intestinal microbiota plays a pivotal role in different physiological processes and is influenced by many factors, including nutrition. Goji berries are a popular nutraceutical product that have been proposed as a dietary supplement in some livestock species, including rabbits, but their effects on the composition of the microbiota have never been investigated. This study evaluated the effects of Goji berry supplementation on the microbiota of different digestive tracts (stomach, duodenum, jejunum, ileum, caecum and colon) of the rabbit, using a modern method of analysis. Our results suggest that Goji berries could modulate the microbiota of the rabbit's digestive tract increasing the growth of beneficial bacteria, such as Ruminococcaceae, Lachnospiraceae, Lactobacillaceae, and particularly, the genus Lactobacillus. These findings suggest that Goji berries could be used to produce innovative feeds for rabbits, although further studies are necessary to evaluate their impact on productive performance, gut immune system maturation, as well as resistance to gastrointestinal disorders. Goji berries show health benefits, although the possible mechanisms of action, including compositional changes in the gut microbiome, are still not fully understood. The aim of this study was to evaluate the effect of Goji berry supplementation on microbiota composition and metabolites in the digestive tracts of rabbits. Twenty-eight New Zealand White rabbits were fed with a commercial feed (control group, C; n = 14) or the same diet supplemented with 3% of Goji berries (Goji group, G; n = 14), from weaning (35 days old) until slaughter (90 days old). At slaughter, samples from the content of the gastrointestinal tracts were collected and analyzed by Next Generation 16S rRNA Gene Sequencing to evaluate the microbial composition. Ammonia and lactic acid were also quantified in caecum. Results showed differences in microbiota composition between the groups for two phyla (Cyanobacteria and Euryarchaeota), two classes (Methanobacteria and Bacilli), five orders, fourteen families, and forty-five genera. Ruminococcaceae (p < 0.05) and Lachnospiraceae (p < 0.01) were more abundant in G than in C group. Lactobacillaceae also showed differences between the two groups, with Lactobacillus as the predominant genus (p = 0.002). Finally, Goji berry supplementation stimulated lactic acid fermentation (p < 0.05). Thus, Goji berry supplementation could modulate gastrointestinal microbiota composition and caecal fermentation

    Bovine Colostrum Supplementation Modulates the Intestinal Microbial Community in Rabbits

    Get PDF
    Simple Summary Recently, research has focused on the modulation of the gut microbiota because of its central role in several digestive physiological functions and its involvement in the onset of not only gastrointestinal but also systemic diseases. Supplementing rabbit diets with nutraceutical substances could be a strategy to prevent dysbiosis, strengthen the immune system, and reduce mortality during the critical weaning period. Bovine colostrum (BC) is a by-product of the dairy industry and is very rich in compounds with several biological activities. Its use as an intestinal microbiota modulator in rabbits has never been investigated. This study evaluates the effects of diet supplementation with two different percentages of BC (2.5 and 5%) on luminal and mucosa-associated microbiota and its metabolism-associated pathways in the jejunum, caecum, and colon of rabbits. Although our results showed no effect of BC on microbiota biodiversity, there were significant differences between experimental groups in the microbial composition, mainly at the level of sub-dominant components depending on the dose of supplementation. The metabolism-associated pathways have also been affected, and particularly interesting are the results on the amino acids and lactose metabolism. Overall, findings suggest that BC could be used as a supplement in rabbit feed, although its effects on productive and reproductive performances, intestinal disease resistance, and economic aspects need to be further evaluated. BC is a nutraceutical that can modulate intestinal microbiota. This study investigates the effects of BC diet supplementation on luminal and mucosa-associated microbiota in the jejunum, caecum, and colon of rabbits. Twenty-one New Zealand White female rabbits were divided into three experimental groups (n = 7) receiving a commercial feed (CTRL group) and the same diet supplemented with 2.5% and 5% BC (2.5% BC and 5% BC groups, respectively), from 35 (weaning) to 90 days of age (slaughtering). At slaughter, the digestive tract was removed from each animal, then both content and mucosa-associated microbiota of jejunum, caecum, and colon were collected and analysed by Next Generation 16SrRNA Gene Sequencing. Significant differences were found in the microbial composition of the three groups (i.e., beta-diversity: p < 0.01), especially in the caecum and colon of the 2.5% BC group. The relative abundance analysis showed that the families most affected by the BC administration were Clostridia UCG-014, Barnesiellaceae, and Eggerthellaceae. A trend was also found for Lachnospiraceae, Akkermansiaceae, and Bacteroidaceae. A functional prediction has revealed several altered pathways in BC groups, with particular reference to amino acids and lactose metabolism. Firmicutes:Bacteroidetes ratio decreased in caecum luminal samples of the 2.5% BC group. These findings suggest that BC supplementation could positively affect the intestinal microbiota. However, further research is needed to establish the optimal administration dose

    Case Series and DARS2 Variant Analysis in Early Severe Forms With Unexpected Presentations

    Get PDF
    Objective: Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is regarded a relatively mild leukodystrophy, diagnosed by characteristic long tract abnormalities on MRI and biallelic variants in DARS2, encoding mitochondrial aspartyl-tRNA synthetase (mtAspRS). DARS2 variants in LBSL are almost invariably compound heterozygous; in 95% of cases, 1 is a leaky splice site variant in intron 2. A few severely affected patients, still fulfilling the MRI criteria, have been described. We noticed highly unusual MRI presentations in 15 cases diagnosed by WES. We examined these cases to determine whether they represent consistent novel LBSL phenotypes. Methods: We reviewed clinical features, MRI abnormalities, and gene variants and investigated the variants' impact on mtAspRS structure and mitochondrial function. Results: We found 2 MRI phenotypes: early severe cerebral hypoplasia/atrophy (9 patients, group 1) and white matter abnormalities without long tract involvement (6 patients, group 2). With antenatal onset, microcephaly, and arrested development, group 1 patients were most severely affected. DARS2 variants were severer than for classic LBSL and severer for group 1 than group 2. All missense variants hit mtAspRS regions involved in tRNAAsp binding, aspartyl-adenosine-5'-monophosphate binding, and/or homodimerization. Missense variants expressed in the yeast DARS2 ortholog showed severely affected mitochondrial function. Conclusions: DARS2 variants are associated with highly heterogeneous phenotypes. New MRI presentations are profound cerebral hypoplasia/atrophy and white matter abnormalities without long tract involvement. Our findings have implications for diagnosis and understanding disease mechanisms, pointing at dominant neuronal/axonal involvement in severe cases. In line with this conclusion, activation of biallelic DARS2 null alleles in conditional transgenic mice leads to massive neuronal apoptosis
    corecore