206 research outputs found

    Microwave-induced control of Free Electron Laser radiation

    Full text link
    The dynamical response of a relativistic bunch of electrons injected in a planar magnetic undulator and interacting with a counterpropagating electromagnetic wave is studied. We demonstrate a resonance condition for which the free electron laser (FEL) dynamics is strongly influenced by the presence of the external field. It opens up the possibility of control of short wavelength FEL emission characteristics by changing the parameters of the microwave field without requiring change in the undulator's geometry or configuration. Numerical examples, assuming realistic parameter values analogous to those of the TTF-FEL, currently under development at DESY, are given for possible control of the amplitude or the polarization of the emitted radiation.Comment: 14 pages, 5 figures, accepted for publication in Phys. Rev.

    A novel method to quantify IRDye800CW fluorescent antibody probes ex vivo in tissue distribution studies

    Get PDF
    BACKGROUND: We describe a new method for biodistribution studies with IRDye800CW fluorescent antibody probes. This method allows the quantification of the IRDye800CW fluorescent tracer in percentage of injected dose per gram of tissue (% ID/g), and it is herein compared to the generally used reference method that makes use of radioactivity. METHODS: Cetuximab was conjugated to both the near-infrared fluorophore IRDye800CW and/or the positron emitter 89-zirconium, which was injected in nude mice bearing A431 human tumor xenografts. Positron emission tomography (PET) and optical imaging were performed 24 h post-injection (p.i.). For the biodistribution study, organs and tumors were collected 24 h p.i., and each of these was halved. One half was used for the determination of probe uptake by radioactivity measurement. The other half was homogenized, and the content of the fluorescent probe was determined by extrapolation from a calibration curve made with the injected probe. RESULTS: Tumors were clearly visualized with both modalities, and the calculated tumor-to-normal tissue ratios were very similar for optical and PET imaging: 3.31 ± 1.09 and 3.15 ± 0.99, respectively. Although some variations were observed in ex vivo analyses, tumor uptake was within the same range for IRDye800CW and gamma ray quantification: 15.07 ± 3.66% ID/g and 13.92 ± 2.59% ID/g, respectively. CONCLUSIONS: The novel method for quantification of the optical tracer IRDye800CW gives similar results as the reference method of gamma ray quantification. This new method is considered very useful in the context of the preclinical development of IRDye800CW fluorescent probes for optical molecular imaging, likely contributing to the selection of lead compounds that are the most promising for clinical translation

    Mapping QTL for Fusarium head blight resistance in a tunisian-derived durum wheat population

    Get PDF
    Fusarium head blight (FHB) damage in durum wheat (Triticum turgidum L. var. durum Desf., turgidum) inflicted massive economic losses worldwide. Meanwhile, FHB resistant durum wheat germplasm is extremely limited. ‘Tunisian108’ is a newly identified tetraploid wheat with FHB resistance. However, genomic regions in ‘Tunisian108’ that significantly associated with FHB resistance are yet unclear. Therefore, a population of 171 backcross inbred lines (BC1F7) derived from a cross between ‘Tunisian108’ and a susceptible durum cultivar ‘Ben’ was characterized. Fusarium graminearum (R010, R1267, and R1322) was point inoculated (greenhouse) or spawn inoculated (field) in 2010 and 2011. Disease severity, Fusarium-damaged kernel (FDK) and mycotoxins were measured. Analysis of variance showed significant genotype and genotype by environment effect on all traits. Approximately 8% of the lines in field and 25% of the lines in greenhouse were more resistance than Tunisian108. A framework linkage map of 267 DArt plus 62 SSR markers was developed representing 239 unique loci and covering a total distance of 1887.6 cM. Composite interval mapping revealed nine QTL for FHB severity, four QTL for DON, and four QTL for FDK on seven chromosomes. Two novel QTL, Qfhb.ndsu-3BL and Qfhb.ndsu-2B, were identified for disease severity, explaining 11 and 6% of the phenotypic variation, respectively. Also, a QTL with large effect on severity and a QTL with negative effect on FDK on chromosome 5A were identified. Importantly, a novel region on chromosome 2B was identified with multiple FHB resistance. Validation on these QTL would facilitate the durum wheat resistance breeding

    Large Nc and Chiral Dynamics

    Get PDF
    We study the dependence on the number of colors of the leading pi pi scattering amplitude in chiral dynamics. We demonstrate the existence of a critical number of colors for and above which the low energy pi pi scattering amplitude computed from the simple sum of the current algebra and vector meson terms is crossing symmetric and unitary at leading order in a truncated and regularized 1/Nc expansion. The critical number of colors turns out to be Nc=6 and is insensitive to the explicit breaking of chiral symmetry. Below this critical value, an additional state is needed to enforce the unitarity bound; it is a broad one, most likely of "four quark" nature.Comment: RevTeX4, 6 fig., 5 page

    Magnetic Catalysis: A Review

    Full text link
    We give an overview of the magnetic catalysis phenomenon. In the framework of quantum field theory, magnetic catalysis is broadly defined as an enhancement of dynamical symmetry breaking by an external magnetic field. We start from a brief discussion of spontaneous symmetry breaking and the role of a magnetic field in its a dynamics. This is followed by a detailed presentation of the essential features of the phenomenon. In particular, we emphasize that the dimensional reduction plays a profound role in the pairing dynamics in a magnetic field. Using the general nature of underlying physics and its robustness with respect to interaction types and model content, we argue that magnetic catalysis is a universal and model-independent phenomenon. In support of this claim, we show how magnetic catalysis is realized in various models with short-range and long-range interactions. We argue that the general nature of the phenomenon implies a wide range of potential applications: from certain types of solid state systems to models in cosmology, particle and nuclear physics. We finish the review with general remarks about magnetic catalysis and an outlook for future research.Comment: 37 pages, to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee. Version 2: references adde

    Oxidation mechanisms occurring in wines

    Get PDF
    The present review aims to show the state of the art on the oxidation mechanisms occurring in wines, as well as the methods to monitor, classify and diagnose wine oxidation. Wine oxidation can be divided in enzymatic oxidation and non-enzymatic oxidation. Enzymatic oxidation almost entirely occurs in grape must and is largely correlated with the content of hydroxycinnamates, such as caffeoyltartaric acid and para-coumaroyltartaric acid, and flavan-3-ols. Non-enzymatic oxidation, also called chemical oxidation of wine, prevails in fermented wine and begin by the oxidation of polyphenols containing a catechol or a galloyl group. These phenolic. reactions, both enzymatic and non-enzymatic, result in by-products named quinones. However, in non-enzymatic oxidation, oxygen does not react directly with phenolic compounds. The limitation on the reactivity of triplet oxygen is overcome by the stepwise addition of a single electron, which can be provided by reduced transition metal ions, essentially iron(II) and copper(I). The sequential electron transfer leads to the formation of hydroperoxide radical (HOO center dot), hydrogen peroxide (H2O2), and hydroxyl radical (HO center dot). The later radical will oxidize almost any organic molecule found in wine and will react with the first species it encounters, depending on their concentration. Sulfur dioxide (SO2) and ascorbic acid, when added to wine, are able to reduce the quinones. Alternative options have been assessed for the prevention of oxidation during wine storage; nevertheless, these are not fully understood or commonly accepted. During aging, aldehydes are important intermediates in the chemical transformations occurring in wines, leading to color and flavor changes. In the same way, a range of off-flavors can be formed from wine oxidation. At low concentrations these flavors may add to the complexity of a wine, but as these increase they begin to detract from wine quality. In addition to the major chemical browning involving wine phenols, the main oxidation reactions occurring during grape juice heating or storage are caramelization and Maillard reaction, which are temperature dependent. Different methods have been proposed in the literature, addressing the complexity and multi-scale related with the oxidation process, to attempt the quantification of antioxidant activity in wines. These methods can be broadly divided in: i) methods based on chemical reactions and ii) methods based on the chemical-physical properties of antioxidants

    Non-minimal coupling of the phantom field and cosmic acceleration

    Full text link
    Motivated by the recent interest in phantom fields as candidates for the dark energy component, we investigate the consequences of the phantom field when is minimally coupled to gravity. In particular, the necessary (but insufficient) conditions for the acceleration and superacceleration of the universe are obtained when the non-minimal coupling term is taken into account. Furthermore, the necessary condition for the cosmic acceleration is derived when the phantom field is non-minimally coupled to gravity and baryonic matter is included.Comment: 9 pages, no figures; (v2) title slightly changed, one reference and acknowledgments added, no change in physic
    • 

    corecore