11 research outputs found

    ¿Las hormigas cortadoras de hojas Atta colombica obtienen sus sensores magnéticos del suelo?

    No full text
    How animals sense, process, and use magnetic information remains elusive. In insects, magnetic particles are candidates for a magnetic sensor. Recent studies suggest that the ant Pachycondyla marginata incorporates iron-containing particles from soil. We used leaf-cutter ants Atta colombica to test whether soil contact is necessary for developing a functional magnetic compass. A. colombica is the only invertebrate known to calculate a path-integrated home vector using a magnetic compass. Here, we show that A. colombica requires contact with soil to incorporate magnetic particles that can be used as a magnetic compass; yet, we also show that ants can biosynthesize magnetic particles. Workers from a soil-free colony ignored a 90° shift in the horizontal component of the geomagnetic field, yet oriented homeward despite the occlusion of any geocentric cues. In contrast, workers from a soil-exposed colony oriented to an intermediate direction between their true and subjective home in the shifted field. Homeward orientations under shifted fields suggest that ants calculated a path-integrated vector using proprioceptive information. Strikingly, ants from the soil-free colony also had magnetic particles; yet, as observed by ferromagnetic resonance, these particles differed from those in soil-exposed ants and were not associated with a magnetic compass sensitive to this experimental manipulation

    Ant antennae: are they sites for magnetoreception?

    Get PDF
    Migration of the Pachycondyla marginata ant is significantly oriented at 13° with respect to the geomagnetic north–south axis. On the basis of previous magnetic measurements of individual parts of the body (antennae, head, thorax and abdomen), the antennae were suggested to host a magnetoreceptor. In order to identify Fe3+/Fe2+ sites in antennae tissue, we used light microscopy on Prussian/Turnbull's blue-stained tissue. Further analysis using transmission electron microscopy imaging and diffraction, combined with elemental analysis, revealed the presence of ultra-fine-grained crystals (20–100 nm) of magnetite/maghaemite (Fe3O4/γ-Fe2O3), haematite (α-Fe2O3), goethite (α-FeOOH) besides (alumo)silicates and Fe/Ti/O compounds in different parts of the antennae, that is, in the joints between the third segment/pedicel, pedicel/scape and scape/head, respectively. The presence of (alumo)silicates and Fe/Ti/O compounds suggests that most, if not all, of the minerals in the tissue are incorporated soil particles rather than biomineralized by the ants. However, as the particles were observed within the tissue, they do not represent contamination. The amount of magnetic material associated with Johnston's organ and other joints appears to be sufficient to produce a magnetic-field-modulated mechanosensory output, which may therefore underlie the magnetic sense of the migratory ant

    Anisotropía magnética y organización de nanopartículas en cabezas y antenas de hormigas cortadoras de hojas neotropicales, Atta colombica

    No full text
    Oriented magnetic nanoparticles have been suggested as a good candidate for a magnetic sensor in ants. Behavioural evidence for a magnetic compass in neotropical leaf-cutter ants, Atta colombica (Formicidae: Attini), motivated a study of the arrangement of magnetic particles in the ants' four major body parts by measuring the angular dependence of the ferromagnetic resonance spectra at room temperature. Spectra of the thoraces and those of the abdomens showed no significant angular dependence, while those of the antennae and those of the heads exhibited a periodic dependence relative to the magnetic field. Fitting of the angular dependence of the resonant field resulted in an unexpected magnetic anisotropy with uniaxial symmetry. High values of the first order anisotropy constant were observed for the magnetic material in antennae (?2.9? × ?105?erg?cm?3) and heads (?1? × ?106?erg?cm?3) as compared to body parts of other social insects. In addition, the magnitude of the anisotropy in the heads was comparable to that observed in magnetite nanoparticles of 4–5?nm diameter. For the antennae, the mean angle of the particles' easy magnetization axis (EA) was estimated to be 41° relative to the straightened antenna's long axis. For the heads, EA was approximately 60° relative to the head's axis running from midway between the spines to the clypeus. These physical characteristics indicate organized magnetic nanoparticles with a potential for directional sensitivity, which is an important feature of magnetic compasses
    corecore