8 research outputs found

    Proteomic identification and validation of biomarkers associated with resistance to radiotherapy in breast cancer

    Get PDF
    Background:Breast cancer is an important health issue. The majority of patients present with early stage cancer and are therefore candidates for breast conserving surgery and radiotherapy. A proportion will suffer from local recurrence, which may be secondary to radiotherapy resistance. Though extensive research has been carried out into molecular markers of resistance, none has been applied to clinical practice, which suggests that the search for such markers is wanting.Materials and Methods:The principle of the biomarker discovery pipeline was applied and cancer cell lines were utilised for the first two phases of this project. Protein expression in radiosensitive and radioresistant cell lines was compared using, first antibody microarray technology (AbMA), as a screening tool, and secondly, western blot (WB) technique as a verification tool. The final stage was clinical validation. A clinical series of archival breast cancer tissue was identified; one representing a radiosensitive group, and a second representing a radioresistant group. Immunohistochemistry (IHC) was then employed to compare the differential protein expression between the two.Results:The AbMA technology was successfully utilised to yield 63 potential biomarkers of radioresistance. Of these, zyxin, PIASx and DR4 were confirmed using WB. Clinical validation showed no association between zyxin and radioresistance; this protein had been previously suggested to be associated with cellular stress. DR4 has been clinically validated using IHC, and has therefore been identified as a putative biomarker using all three techniques. In addition, the association between radioresistance and the 26S proteasome was clinically validated.Discussion:This work supports the role of zyxin as a stress associated protein. The underexpression of DR4, a pro-apoptotic factor, and 26S proteasome, a major effector in the protein proteolysis machinery and cell cycle has been proven. These two proteins present putative markers of radioresistance. The possibility of pre-treatment definition of the expected response to radiation therapy would improve patients’ outcome. Radiation can be offered only to those expected to respond to it, while others would be offered other treatment modalities

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients

    Breast cancer management pathways during the COVID-19 pandemic: outcomes from the UK ‘Alert Level 4’ phase of the B-MaP-C study

    Get PDF
    Abstract: Background: The B-MaP-C study aimed to determine alterations to breast cancer (BC) management during the peak transmission period of the UK COVID-19 pandemic and the potential impact of these treatment decisions. Methods: This was a national cohort study of patients with early BC undergoing multidisciplinary team (MDT)-guided treatment recommendations during the pandemic, designated ‘standard’ or ‘COVID-altered’, in the preoperative, operative and post-operative setting. Findings: Of 3776 patients (from 64 UK units) in the study, 2246 (59%) had ‘COVID-altered’ management. ‘Bridging’ endocrine therapy was used (n = 951) where theatre capacity was reduced. There was increasing access to COVID-19 low-risk theatres during the study period (59%). In line with national guidance, immediate breast reconstruction was avoided (n = 299). Where adjuvant chemotherapy was omitted (n = 81), the median benefit was only 3% (IQR 2–9%) using ‘NHS Predict’. There was the rapid adoption of new evidence-based hypofractionated radiotherapy (n = 781, from 46 units). Only 14 patients (1%) tested positive for SARS-CoV-2 during their treatment journey. Conclusions: The majority of ‘COVID-altered’ management decisions were largely in line with pre-COVID evidence-based guidelines, implying that breast cancer survival outcomes are unlikely to be negatively impacted by the pandemic. However, in this study, the potential impact of delays to BC presentation or diagnosis remains unknown

    Repeatedly identified differentially expressed proteins (RIDEPs) from antibody microarray proteomic analysis

    No full text
    Antibody microarrays are powerful new tools in the field of comparative proteomics. The success of the biomarker discovery pipeline relies on the quality of data generated in the discovery phase and careful selection of proteins for the verification phase. Recent meta-analyses found a number of repeatedly identified differentially expressed proteins (RIDEPs) from mass spectrometry-based proteomics research in a range of species. We aimed to assess RIDEPs based on antibody microarray data-sets. A total of 13 independent experiments encompassing a range of oncology-related research on human tissue, cells or cell lines from 5 distinct sample groups were performed utilising a commercial 725 antibody microarray platform (Panorama XPRESS Profiler725; Sigma-Aldrich). Analysis of all microarray slides was carried out by the same individual to reduce inter-observer variability. Fold changes of >= 1.8 were considered significant. A total of 13 RIDEPs were seen, each appearing in at least 4/13 (30%) antibody microarray analyses from at least 2 out of 5 experimental sample groups. The phenomenon of RIDEPs may exist in antibody microarray proteomics and we report a preliminary list of 13 RIDEPs from the XPRESS Profiler725 platform. This information will be useful when interpreting experimental data and considering which DEPs should be prioritised for verification. (C) 2011 Elsevier B.V. All rights reserved

    A pilot study to investigate the role of the 26S proteasome in radiotherapy resistance and loco-regional recurrence following breast conserving therapy for early breast cancer

    No full text
    Breast conserving therapy is a currently accepted method for managing patients with early stage breast cancer. However, approximately 7% of patients may develop loco-regional tumour recurrence within 5 years. We previously reported that expression of the 26S proteasome may be associated with radio-resistance. Here we aimed to analyse the 26S proteasome in a pilot series of early breast cancers and correlate the findings with loco-regional recurrence. Fourteen patients with early breast cancer who developed loco-regional recurrence within 4 years of completing breast conserving therapy were selected according to strict criteria and compared with those from 14 patients who were disease-free at 10 years. Decreased expression of the 26S proteasome was significantly associated with radio-resistance, manifested as the development of a loco-regional recurrence within 4 years of breast conserving therapy (p = 0.018). This small pilot study provides further suggestion that the 26S proteasome may be associated with response to radiotherapy

    Pilot and feasibility study: comparative proteomic analysis by 2-DE MALDI TOF/TOF MS reveals 14-3-3 proteins as putative biomarkers of response to neoadjuvant chemotherapy in ER-positive breast cancer

    No full text
    Neoadjuvant chemotherapy is used to treat oestrogen receptor-positive breast cancer however chemo-resistance is a major obstacle in this molecular subtype. The ability to predict tumour response would allow chemotherapy administration to be directed towards patients who would most benefit, thus maximising treatment efficacy. We aimed to identify protein biomarkers associated with response to neoadjuvant chemotherapy, in a pilot study using comparative 2-DE MALDI TOF/TOF MS proteomic analysis of breast tumour samples. A total of 3 comparative proteomic experiments were performed, comparing protein expression between chemotherapy-sensitive and chemotherapy-resistant oestrogen receptor-positive invasive ductal carcinoma tissue samples. This identified a list of 132 unique proteins that were significantly differentially expressed (≥ 2 fold) in chemotherapy resistant samples, 57 of which were identified in at least two experiments. Ingenuity® Pathway Analysis was used to map the 57 DEPs onto canonical signalling pathways. We implicate several isoforms of 14-3-3 family proteins (theta/tau, gamma, epsilon, beta/alpha and zeta/delta), which have previously been associated with chemotherapy resistance in breast cancer. Extensive clinical validation is now required to fully assess the role of these proteins as putative markers of chemotherapy response in luminal breast cancer subtypes

    Proteomic identification of predictive biomarkers of resistance to neoadjuvant chemotherapy in luminal breast cancer: a possible role for 14-3-3 theta/tau and tBID?

    No full text
    Introduction: Chemotherapy resistance is a major obstacle in effective neoadjuvant treatment for estrogen receptor-positive breast cancer. The ability to predict tumour response would allow chemotherapy administration to be directed towards only those patients who would benefit, thus maximising treatment efficiency. We aimed to identify putative protein biomarkers associated with chemotherapy resistance, using fresh tumour samples with antibody microarray analysis and then to perform pilot clinical validation experiments. Materials and methods: Chemotherapy resistant and chemotherapy sensitive tumour samples were collected from breast cancer patients who had received anthracycline based neoadjuvant therapy consisting of epirubicin with cyclophosphamide followed by docetaxel. A total of 5 comparative proteomics experiments were performed using invasive ductal carcinomas which demonstrated estrogen receptor positivity (luminal subtype). Protein expression was compared between chemotherapy resistant and chemotherapy sensitive tumour samples using the Panorama XPRESS Profiler725 antibody microarray containing 725 antibodies from a wide variety of cell signalling and apoptosis pathways. A pilot series of archival samples was used for clinical validation of putative predictive biomarkers. Results: AbMA analysis revealed 38 differentially expressed proteins which demonstrated at least 1.8 fold difference in expression in chemotherapy resistant tumours and 7 of these proteins (Zyxin, 14-3-3 theta/tau, tBID, Pinin, Bcl-xL, RIP and MyD88) were found in at least 2 experiments. Clinical validation in a pilot series of archival samples revealed 14-3-3 theta/tau and tBID to be significantly associated with chemotherapy resistance. Conclusions: For the first time, antibody microarrays have been used to identify proteins associated with chemotherapy resistance using fresh breast cancer tissue. We propose a potential role for 14-3-3 theta/tau and tBID as predictive biomarkers of neoadjuvant chemotherapy resistance in breast cancer. Further validation in a larger sample series is now required
    corecore