45 research outputs found
Identification of a dna methylation episignature in the 22q11.2 deletion syndrome
The 22q11.2 deletion syndrome (22q11.2DS) is the most common genomic disorder in humans and is the result of a recurrent 1.5 to 2.5 Mb deletion, encompassing approximately 20â40 genes, respectively. The clinical presentation of the typical deletion includes: Velocardiofacial, Di George, Opitz G/BBB and Conotruncalanomaly face syndromes. Atypical deletions (proximal, distal or nested) are rare and characterized mainly by normal phenotype or mild intellectual disability and variable clinical features. The pathogenetic mechanisms underlying this disorder are not completely understood. Because the 22q11.2 region harbours genes coding for transcriptional factors and chromatin remodelers, in this study, we performed analysis of genomeâwide DNA methylation of peripheral blood from 49 patients with 22q11.2DS using the Illumina Infinium Methylation EPIC bead chip arrays. This cohort comprises 43 typical, 2 proximal and 4 distal deletions. We demonstrated the evidence of a unique and highly specific episignature in all typical and proximal 22q11.2DS. The sensitivity and specificity of this signature was further confirmed by comparing it to over 1500 patients with other neurodevelopmental disorders with known episignatures. Mapping the 22q11.2DS DNA methylation episignature provides both novel insights into the molecular pathogenesis of this disorder and an effective tool in the molecular diagnosis of 22q11.2DS
Global disparities in surgeonsâ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study
: The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSSŸ v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI
VizieR Online Data Catalog: The third Fermi-LAT >10GeV catalog (3FHL) (Ajello+, 2017)
We have analyzed the first 7 years of Fermi-LAT data from 2008 August 4 to 2015 August 2 using Pass 8 events. Pass 8 improves the photon acceptance and the PSF, reduces the background of misclassified charged particles and extends the useful LAT energy range (10GeV-2TeV). See Figure 1. (3 data files)
VizieR Online Data Catalog: Third catalog of LAT-detected AGNs (3LAC) (Ackermann+, 2015)
Supplemental material related to the Fermi LAT third source catalog (3FGL) (Acero et al, 2015)The gamma-ray results used in this paper were derived in the context of the 3FGL catalog (Fermi-LAT Collaboration 2015, J/ApJS/218/23). No additional analysis of the gamma-ray data was performed in the context of the present paper except for the fitting of the monthly light curves and the broadband SED fitting. The data were collected over the first 48 months of the mission, from 2008 August 4 to 2012 July 31 (MJD 54682 to 56139). Using the Australia Telescope Compact Array (ATCA) at 5 GHz and 9 GHz, Petrov et al. (2013, J/MNRAS/432/1294) detected 424 sources in the LAT error ellipses of southern unassociated 2FGL sources. See table 2
VizieR Online Data Catalog: Fermi LAT third source catalog (3FGL) (Acero+, 2015)
The data for the 3FGL catalog were taken during the period from 2008 August 4 (15:43 UTC) to 2012 July 31 (22:46 UTC), to covering close to 4yr. The LAT detects Îł-rays in the energy range from 20MeV to more than 300GeV. (4 data files). <P /
DNA Methylation in the Fields of Prenatal Diagnosis and Early Detection of Cancers
: The central objective of the metamorphosis of discovery science into biomedical applications is to serve the purpose of patients and curtail the global disease burden. The journey from the discovery of DNA methylation (DNAm) as a biological process to its emergence as a diagnostic tool is one of the finest examples of such metamorphosis and has taken nearly a century. Particularly in the last decade, the application of DNA methylation studies in the clinic has been standardized more than ever before, with great potential to diagnose a multitude of diseases that are associated with a burgeoning number of genes with this epigenetic alteration. Fetal DNAm detection is becoming useful for noninvasive prenatal testing, whereas, in very preterm infants, DNAm is also shown to be a potential biological indicator of prenatal risk factors. In the context of cancer, liquid biopsy-based DNA-methylation profiling is offering valuable epigenetic biomarkers for noninvasive early-stage diagnosis. In this review, we focus on the applications of DNA methylation in prenatal diagnosis for delivering timely therapy before or after birth and in detecting early-stage cancers for better clinical outcomes. Furthermore, we also provide an up-to-date commercial landscape of DNAm biomarkers for cancer detection and screening of cancers of unknown origin
Dynamics and flexibility of human aromatase probed by FTIR and time resolved fluorescence spectroscopy.
Human aromatase (CYP19A1) is a steroidogenic cytochrome P450 converting androgens into estrogens. No ligand-free crystal structure of the enzyme is available to date. The crystal structure in complex with the substrate androstenedione and the steroidal inhibitor exemestane shows a very compact conformation of the enzyme, leaving unanswered questions on the conformational changes that must occur to allow access of the ligand to the active site. As H/D exchange kinetics followed by FTIR spectroscopy can provide information on the conformational changes in proteins where solvent accessibility is affected, here the amide I region was used to measure the exchange rates of the different elements of the secondary structure for aromatase in the ligand-free form and in the presence of the substrate androstenedione and the inhibitor anastrozole. Biphasic exponential functions were found to fit the H/D exchange data collected as a function of time. Two exchange rates were assigned to two populations of protons present in different flexible regions of the protein. The addition of the substrate androstenedione and the inhibitor anastrozole lowers the H/D exchange rates of the α-helices of the enzyme when compared to the ligand-free form. Furthermore, the presence of the inhibitor anastrozole lowers exchange rate constant (k1) for ÎČ-sheets from 0.22±0.06 min(-1) for the inhibitor-bound enzyme to 0.12±0.02 min(-1) for the free protein. Dynamics effects localised in helix F were studied by time resolved fluorescence. The data demonstrate that the fluorescence lifetime component associated to Trp224 emission undergoes a shift toward longer lifetimes (from â5.0 to â5.5 ns) when the substrate or the inhibitor are present, suggesting slower dynamics in the presence of ligands. Together the results are consistent with different degrees of flexibility of the access channel and therefore different conformations adopted by the enzyme in the free, substrate- and inhibitor-bound forms
New insight into the interaction of TRAF2 C-terminal domain with lipid raft microdomains.
In this study we provide the first evidence of the interaction of a truncated-TRAF2 with lipid raft microdomains. We have analyzed this interaction by measuring the diffusion coefficient of the protein in large and giant unilamellar vesicles (LUVs and GUVs, respectively) obtained both from synthetic lipid mixtures and from natural extracts. Steady-state fluorescence measurements performed with synthetic vesicles indicate that this truncated form of TRAF2 displays a tighter binding to raft-like LUVs with respect to the control (POPC-containing LUVs), and that this process depends on the protein oligomeric state. Generalized Polarization measurements and spectral phasor analysis revealed that truncated-TRAF2 affects the membrane fluidity, especially when vesicles are heated up at physiological temperature. The addition of nanomolar concentration of TRAF2 in GUVs also seems to exert a mechanical action, as demonstrated by the formation of intraluminal vesicles, a process in which ganglioside GM1 plays a crucial role