10 research outputs found

    Differential Requirements for COPI Coats in Formation of Replication Complexes among Three Genera of Picornaviridae

    Get PDF
    Picornavirus RNA replication requires the formation of replication complexes (RCs) consisting of virus-induced vesicles associated with viral nonstructural proteins and RNA. Brefeldin A (BFA) has been shown to strongly inhibit RNA replication of poliovirus but not of encephalomyocarditis virus (EMCV). Here, we demonstrate that the replication of parechovirus 1 (ParV1) is partly resistant to BFA, whereas echovirus 11 (EV11) replication is strongly inhibited. Since BFA inhibits COPI-dependent steps in endoplasmic reticulum (ER)-Golgi transport, we tested a hypothesis that different picornaviruses may have differential requirements for COPI in the formation of their RCs. Using immunofluorescence and cryo-immunoelectron microscopy we examined the association of a COPI component, ß-COP, with the RCs of EMCV, ParV1, and EV11. EMCV RCs did not contain ß-COP. In contrast, ß-COP appeared to be specifically distributed to the RCs of EV11. In ParV1-infected cells ß-COP was largely dispersed throughout the cytoplasm, with some being present in the RCs. These results suggest that there are differences in the involvement of COPI in the formation of the RCs of various picornaviruses, corresponding to their differential sensitivity to BFA. EMCV RCs are likely to be formed immediately after vesicle budding from the ER, prior to COPI association with membranes. ParV1 RCs are formed from COPI-containing membranes but COPI is unlikely to be directly involved in their formation, whereas formation of EV11 RCs appears to be dependent on COPI association with membranes

    Rare and common epilepsies converge on a shared gene regulatory network providing opportunities for novel antiepileptic drug discovery

    Get PDF
    Background The relationship between monogenic and polygenic forms of epilepsy is poorly understood, and the extent to which the genetic and acquired epilepsies share common pathways is unclear. Here, we use an integrated systems-level analysis of brain gene expression data to identify molecular networks disrupted in epilepsy. Results We identify a co-expression network of 320 genes (M30), which is significantly enriched for non-synonymous de novo mutations ascertained from patients with monogenic epilepsy, and for common variants associated with polygenic epilepsy. The genes in M30 network are expressed widely in the human brain under tight developmental control, and encode physically interacting proteins involved in synaptic processes. The most highly connected proteins within M30 network are preferentially disrupted by deleterious de novo mutations for monogenic epilepsy, in line with the centrality-lethality hypothesis. Analysis of M30 expression revealed consistent down-regulation in the epileptic brain in heterogeneous forms of epilepsy including human temporal lobe epilepsy, a mouse model of acquired temporal lobe epilepsy, and a mouse model of monogenic Dravet (SCN1A) disease. These results suggest functional disruption of M30 via gene mutation or altered expression as a convergent mechanism regulating susceptibility to epilepsy broadly. Using the large collection of drug-induced gene expression data from Connectivity Map, several drugs were predicted to preferentially restore the down-regulation of M30 in epilepsy toward health, most notably valproic acid, whose effect on M30 expression was replicated in neurons. Conclusions Taken together, our results suggest targeting the expression of M30 as a potential new therapeutic strategy in epilepsy

    Clinical and molecular characterisation of KCNT1-related severe early onset epilepsy

    Get PDF
    Objective: To characterise the phenotypic spectrum, molecular genetic findings and functional consequences of pathogenic variants in early onset KCNT1-epilepsy. Methods: We identified a cohort of 31 patients with epilepsy of infancy with migrating focal seizures (EIMFS) and screened for variants in KCNT1 using direct Sanger sequencing, a multiple gene next generation sequencing panel and whole exome sequencing. Additional patients with non-EIMFS early onset epilepsy in whom we identified KCNT1 variants on local diagnostic multiple gene panel testing were also included. Where possible, we performed homology modelling to predict putative effects of variants on protein structure and function. We undertook electrophysiological assessment of mutant KCNT1 channels in a Xenopus oocyte model system. Results: We identified pathogenic variants in KCNT1 in 12 patients, four of which are novel. Most variants occurred de novo. Ten had a clinical diagnosis of EIMFS and the other two presented with early onset severe nocturnal frontal lobe seizures. Three patients had a trial of quinidine with good clinical response in one. Computational modelling analysis implicates abnormal pore function (F346L) and impaired tetramer formation (F502V) as putative disease mechanisms. All evaluated KCNT1 variants resulted in marked gain-of-function, with significantly increased channel amplitude and variable blockade by quinidine. Conclusions: Gain-of-function KCNT1 pathogenic variants cause a spectrum of severe focal epilepsies with onset in early infancy. Currently, genotype-phenotype correlations are unclear, though clinical outcome is poor for the majority of cases. Further elucidation of disease mechanisms may facilitate the development of targeted treatments, much needed for this pharmacoresistant genetic epilepsy

    Electrophysiological and gene expression characterization of the ontogeny of nestin-expressing cells in the adult mouse midbrain

    No full text
    The birth of new neurons, or neurogenesis, in the adult midbrain is important for progressing dopamine cell-replacement therapies for Parkinson's disease. Most studies suggest newborn cells remain undifferentiated or differentiate into glia within the adult midbrain. However, some studies suggest nestin + neural precursor cells (NPCs) have a propensity to generate new neurons here. We sought to confirm this by administering tamoxifen to adult NesCreERT2/R26eYFP transgenic mice, which permanently labelled adult nestin-expressing cells and their progeny with enhanced yellow fluorescent protein (eYFP). eYFP+ midbrain cells were then characterized 1–32 weeks later in acutely prepared brain slices using whole-cell patch clamp electrophysiology combined with single-cell RT-qPCR. Most eYFP+ cells exhibited a mature neuronal phenotype with large amplitude fast action potentials (APs), spontaneous post-synaptic currents (sPSCs), and expression of ‘mature’ neuronal genes (NeuN, Gad1, Gad2 and/or VGLUT2). This was the case even at the earliest time-point following tamoxifen (i.e. 1 week). In comparison to neighboring eYFP− (control) cells, eYFP+ cells discharged more APs per unit current injection, and had faster AP time-to-peak, hyperpolarized resting membrane potential, smaller membrane capacitance and shorter duration sPSCs. eYFP+ cells were also differentiated from eYFP− cells by increased expression of ‘immature’ pro-neuronal genes (Pax6, Ngn2 and/or Msx1). However, further analyses failed to reveal evidence of a place of birth, neuronal differentiation, maturation and integration indicative of classical neurogenesis. Thus our findings do not support the notion that nestin + NPCs in the adult SNc and midbrain generate new neurons via classical neurogenesis. Rather, they raise the possibility that mature neurons express nestin under unknown circumstances, and that this is associated with altered physiology and gene expression

    Method of derivation and differentiation of mouse embryonic stem cells generating synchronous neuronal networks.

    No full text
    BACKGROUND: Stem cells-derived neuronal cultures hold great promise for in vitro disease modelling and drug screening. However, currently stem cells-derived neuronal cultures do not recapitulate the functional properties of primary neurons, such as network properties. Cultured primary murine neurons develop networks which are synchronised over large fractions of the culture, whereas neurons derived from mouse embryonic stem cells (ESCs) display only partly synchronised network activity and human pluripotent stem cells-derived neurons have mostly asynchronous network properties. Therefore, strategies to improve correspondence of derived neuronal cultures with primary neurons need to be developed to validate the use of stem cell-derived neuronal cultures as in vitro models. NEW METHOD: By combining serum-free derivation of ESCs from mouse blastocysts with neuronal differentiation of ESCs in morphogen-free adherent culture we generated neuronal networks with properties recapitulating those of mature primary cortical cultures. RESULTS: After 35days of differentiation ESC-derived neurons developed network activity very similar to that of mature primary cortical neurons. Importantly, ESC plating density was critical for network development. COMPARISON WITH EXISTING METHOD(S): Compared to the previously published methods this protocol generated more synchronous neuronal networks, with high similarity to the networks formed in mature primary cortical culture. CONCLUSION: We have demonstrated that ESC-derived neuronal networks recapitulating key properties of mature primary cortical networks can be generated by optimising both stem cell derivation and differentiation. This validates the approach of using ESC-derived neuronal cultures for disease modelling and in vitro drug screening. J Neurosci Methods 2018 Jan 1; 293:53-58

    Dominant KCNA2 mutation causes episodic ataxia and pharmacoresponsive epilepsy

    Full text link
    OBJECTIVE: To identify the genetic basis of a family segregating episodic ataxia, infantile seizures, and heterogeneous epilepsies and to study the phenotypic spectrum of KCNA2 mutations. METHODS: A family with 7 affected individuals over 3 generations underwent detailed phenotyping. Whole genome sequencing was performed on a mildly affected grandmother and her grandson with epileptic encephalopathy (EE). Segregating variants were filtered and prioritized based on functional annotations. The effects of the mutation on channel function were analyzed in vitro by voltage clamp assay and in silico by molecular modeling. KCNA2 was sequenced in 35 probands with heterogeneous phenotypes. RESULTS: The 7 family members had episodic ataxia (5), self-limited infantile seizures (5), evolving to genetic generalized epilepsy (4), focal seizures (2), and EE (1). They had a segregating novel mutation in the shaker type voltage-gated potassium channel KCNA2 (CCDS_827.1: c.765_773del; p.255_257del). A rare missense SCN2A (rs200884216) variant was also found in 2 affected siblings and their unaffected mother. The p.255_257del mutation caused dominant negative loss of channel function. Molecular modeling predicted repositioning of critical arginine residues in the voltage-sensing domain. KCNA2 sequencing revealed 1 de novo mutation (CCDS_827.1: c.890G>A; p.Arg297Gln) in a girl with EE, ataxia, and tremor. CONCLUSIONS: A KCNA2 mutation caused dominantly inherited episodic ataxia, mild infantile-onset seizures, and later generalized and focal epilepsies in the setting of normal intellect. This observation expands the KCNA2 phenotypic spectrum from EE often associated with chronic ataxia, reflecting the marked variation in severity observed in many ion channel disorders.Mark A. Corbett, Susannah T. Bellows, Melody Li, Renée Carroll, Silvana Micallef, Gemma L. Carvill, Candace T. Myers, Katherine B. Howell, Snezana Maljevic, Holger Lerche, Elena V. Gazina, Heather C. Mefford, Melanie Bahlo, Samuel F. Berkovic, Steven Petrou, Ingrid E. Scheffer, Jozef Gec
    corecore