2,346 research outputs found

    Competition and stability: what's special about banking?

    Get PDF
    This paper examines the relationship between competition policies and policies to preserve stability in the banking sector. Market structures and the relative importance of the three classical antitrust areas for banking are discussed, showing the predominance of merger review considerations for loan and deposit markets as well as the relevance of cartel considerations for payment systems. A core part of the paper is an analysis of the relative roles of competition and supervisory authorities in the review of bank mergers for the G-7 industrialised countries. A wide variety of approaches emerges, with some countries giving a stronger role to prudential supervisors than to competition authorities and other countries doing it the other way round. In search for explanations for this diversity the theoretical and empirical literature on the competition-stability nexus in banking is surveyed. It turns out that the widely accepted trade-off between competition and stability does not generally hold. JEL Classification: G21, G28, G34, K21, L4antitrust policies, Bank competition, banking supervision, financial stability, mergers & acquisitions

    Correlator expansion approach to stationary states of weakly coupled cavity arrays

    Full text link
    We introduce a method for calculating the stationary state of a translation invariant array of weakly coupled cavities in the presence of dissipation and coherent as well as incoherent drives. Instead of computing the full density matrix our method directly calculates the correlation functions which are relevant for obtaining all local quantities of interest. It considers an expansion of the correlation functions and their equations of motion in powers of the photon tunneling rate between adjacent cavities, leading to an exact second order solution for any number of cavities. Our method provides a controllable approximation for weak tunneling rates applicable to the strongly correlated regime that is dominated by nonlinearities in the cavities and thus of high interest.Comment: contribution to J. Phys. B special issue celebrating Jaynes-Cummings physic

    The economic impact of merger control legislation

    Get PDF
    Based on a unique dataset of legislative changes in industrial countries, we identify events that strengthen the competition control of mergers and acquisitions, analyze their impact on banks and non-financial firms and explain the different reactions observed with specific regulatory characteristics of the banking sector. Covering nineteen countries for the period 1987 to 2004, we find that more competition-oriented merger control increases the stock prices of banks and decreases the stock prices of non-financial firms. Bank targets become more profitable and larger, while those of non-financial firms remain mostly unaffected. A major determinant of the positive bank returns is the degree of opaqueness that characterizes the institutional setup for supervisory bank merger reviews. The legal design of the supervisory control of bank mergers may therefore have important implications for real activity

    Photon correlations from ultra-strong optical nonlinearities

    Get PDF
    We study the full field and frequency filtered output photon statistics of a resonator in thermal equilibrium with a bath and containing an arbitrarily large quartic nonlinearity. According to the general theory of photodetection, we derive general input-output relations valid for the ultra-anharmonic regime, where the nonlinearity becomes comparable to the energy of the resonator, and show how the emission properties are modified as compared to the generally assumed simple anharmonic regime. We analyse the impact of the nonlinearity on the full statistics of the emission and its spectral properties. In particular we derive a semi-analytical expression for the frequency resolved two-photon correlations or two-photon spectrum of the system in terms of the master equation coefficients and density matrix. This provides a very clear insight into the level structure and emission possibilities of the system.Comment: 10 pages, 7 figure

    Theory of frequency-filtered and time-resolved N-photon correlations

    Full text link
    A theory of correlations between N photons of given frequencies and detected at given time delays is presented. These correlation functions are usually too cumbersome to be computed explicitly. We show that they are obtained exactly through intensity correlations between two-level sensors in the limit of their vanishing coupling to the system. This allows the computation of correlation functions hitherto unreachable. The uncertainties in time and frequency of the detection, which are necessary variables to describe the system, are intrinsic to the theory. We illustrate the formalism with the Jaynes--Cummings model, showing how correlations of various peaks at zero or finite time delays bring new insights into the dynamics of open quantum systems.Comment: 12 pages, 2 figure

    Low-temperature lattice effects in the spin-liquid candidate κ\kappa-(BEDT-TTF)2_2Cu2_2(CN)3_3

    Full text link
    The quasi-two-dimensional organic charge-transfer salt κ\kappa-(BEDT-TTF)2_2Cu2_2(CN)3_3 is one of the prime candidates for a quantum spin-liquid due the strong spin frustration of its anisotropic triangular lattice in combination with its proximity to the Mott transition. Despite intensive investigations of the material's low-temperature properties, several important questions remain to be answered. Particularly puzzling are the 6\,K anomaly and the enigmatic effects observed in magnetic fields. Here we report on low-temperature measurements of lattice effects which were shown to be particularly strongly pronounced in this material (R. S. Manna \emph{et al.}, Phys. Rev. Lett. \textbf{104}, 016403 (2010)). A special focus of our study lies on sample-to-sample variations of these effects and their implications on the interpretation of experimental data. By investigating overall nine single crystals from two different batches, we can state that there are considerable differences in the size of the second-order phase transition anomaly around 6\,K, varying within a factor of 3. In addition, we find field-induced anomalies giving rise to pronounced features in the sample length for two out of these nine crystals for temperatures T<T < 9 K. We tentatively assign the latter effects to BB-induced magnetic clusters suspected to nucleate around crystal imperfections. These BB-induced effects are absent for the crystals where the 6\,K anomaly is most strongly pronounced. The large lattice effects observed at 6\,K are consistent with proposed pairing instabilities of fermionic excitations breaking the lattice symmetry. The strong sample-to-sample variation in the size of the phase transition anomaly suggests that the conversion of the fermions to bosons at the instability is only partial and to some extent influenced by not yet identified sample-specific parameters

    A new chronology for the Moon and Mercury

    Full text link
    In this paper we present a new method for dating the surface of the Moon, obtained by modeling the incoming flux of impactors and converting it into a size distribution of resulting craters. We compare the results from this model with the standard chronology for the Moon showing their similarities and discrepancies. In particular, we find indications of a non-constant impactor flux in the last 500 Myr and also discuss the implications of our findings for the Late Heavy Bombardment hypothesis. We also show the potential of our model for accurate dating of other inner Solar System bodies, by applying it to Mercury.Comment: 27 pages, 13 figures, 1 table; accepted by A

    Microbiota-Dependent Immune Responses to Intestinal Parasites

    Get PDF
    The digestive tract plays a central role in nutrient acquisition and harbors a vast and intricate community of bacteria, fungi, viruses and parasites, collectively known as the microbiota. In recent years, there has been increasing recognition of the complex and highly contextual involvement of this microbiota in the induction and education of host innate and adaptive immune responses under homeostasis, during infection and inflammation. The gut passage and colonization by unicellular and multicellular parasite species present an immense challenge to the host immune system and to the microbial communities that provide vital support for its proper functioning. In mammals, parasitic nematodes induce distinct shifts in the intestinal microbial composition. Vice versa, the commensal microbiota has been shown to serve as a molecular adjuvant and immunomodulator during intestinal parasite infections. Moreover, similar interactions occur within insect vectors of deadly human pathogens. The gut microbiota has emerged as a crucial factor affecting vector competence in Anopheles mosquitoes, where it modulates outcomes of infections with malaria parasites. In this review, we discuss currently known involvements of the host microbiota in the instruction, support or suppression of host immune responses to gastrointestinal nematodes and protozoan parasites in mice, as well as in the malaria mosquito vector. A deeper understanding of the mechanisms underlying microbiota-dependent modulation of host and vector immunity against parasites in mammals and mosquitoes is key to a better understanding of the host-parasite relationships and the identification of more efficient approaches for intervention and treatment of parasite infections of both clinical and veterinary importance
    corecore