64 research outputs found

    Monitoring groene grondstoffen

    Get PDF
    Het Platform Groene Grondstoffen heeft een monitoringsmethodiek laten ontwikkelen waarmee het aandeel biomassa dat bijdraagt aan de economie kan worden vastgesteld. Dit rapport beschrijft hoe de monitor is ontwikkeld en waar nog hiaten in de kennis zitten

    Marginal agricultural land low-input systems for biomass production

    Get PDF
    This study deals with approaches for a social-ecological friendly European bioeconomy based on biomass from industrial crops cultivated on marginal agricultural land. The selected crops to be investigated are: Biomass sorghum, camelina, cardoon, castor, crambe, Ethiopian mustard, giant reed, hemp, lupin, miscanthus, pennycress, poplar, reed canary grass, safflower, Siberian elm, switchgrass, tall wheatgrass, wild sugarcane, and willow. The research question focused on the overall crop growth suitability under low-input management. The study assessed: (i) How the growth suitability of industrial crops can be defined under the given natural constraints of European marginal agricultural lands; and (ii) which agricultural practices are required for marginal agricultural land low-input systems (MALLIS). For the growth-suitability analysis, available thresholds and growth requirements of the selected industrial crops were defined. The marginal agricultural land was categorized according to the agro-ecological zone (AEZ) concept in combination with the marginality constraints, so-called 'marginal agro-ecological zones' (M-AEZ). It was found that both large marginal agricultural areas and numerous agricultural practices are available for industrial crop cultivation on European marginal agricultural lands. These results help to further describe the suitability of industrial crops for the development of social-ecologically friendly MALLIS in Europe

    Opportunities for low indirect land use biomass for biofuels in Europe

    Get PDF
    Sustainable biofuels are an important tool for the decarbonisation of transport. This is especially true in aviation, maritime, and heavy-duty sectors with limited short-term alternatives. Their use by conventional transport fleets requires few changes to the existing infrastructure and engines, and thus their integration can be smooth and relatively rapid. Provision of feedstock should comply with sustainability principles for (i) producing additional biomass without distorting food and feed markets and (ii) addressing challenges for ecosystem services, including biodiversity, and soil quality. This paper performs a meta-analysis of current research for low indirect land use change (ILUC) risk biomass crops for sustainable biofuels that benefited either from improved agricultural practices or from cultivation in unused, abandoned, or severely degraded land. Two categories of biomass crops are considered here: oil and lignocellulosic. The findings confirm that there are significant opportunities to cultivate these crops in European agro-ecological zones with sustainable agronomic practices both in farming land and in land with natural constraints (unused, abandoned, and degraded land). These could produce additional low environmental impact feedstocks for biofuels and deliver economic benefits to farmer

    Microanatomy of the Human Atherosclerotic Plaque by Single-Cell Transcriptomics

    Get PDF
    RATIONALE: Atherosclerotic lesions are known for their cellular heterogeneity, yet the molecular complexity within the cells of human plaques has not been fully assessed. OBJECTIVE: Using single-cell transcriptomics and chromatin accessibility, we gained a better understanding of the pathophysiology underlying human atherosclerosis. METHODS AND RESULTS: We performed single-cell RNA and single-cell ATAC sequencing on human carotid atherosclerotic plaques to define the cells at play and determine their transcriptomic and epigenomic characteristics. We identified 14 distinct cell populations including endothelial cells, smooth muscle cells, mast cells, B cells, myeloid cells, and T cells and identified multiple cellular activation states and suggested cellular interconversions. Within the endothelial cell population, we defined subsets with angiogenic capacity plus clear signs of endothelial to mesenchymal transition. CD4+ and CD8+ T cells showed activation-based subclasses, each with a gradual decline from a cytotoxic to a more quiescent phenotype. Myeloid cells included 2 populations of proinflammatory macrophages showing IL (interleukin) 1B or TNF (tumor necrosis factor) expression as well as a foam cell-like population expressing TREM2 (triggering receptor expressed on myeloid cells 2) and displaying a fibrosis-promoting phenotype. ATACseq data identified specific transcription factors associated with the myeloid subpopulation and T cell cytokine profiles underlying mutual activation between both cell types. Finally, cardiovascular disease susceptibility genes identified using public genome-wide association studies data were particularly enriched in lesional macrophages, endothelial, and smooth muscle cells. CONCLUSIONS: This study provides a transcriptome-based cellular landscape of human atherosclerotic plaques and highlights cellular plasticity and intercellular communication at the site of disease. This detailed definition of cell communities at play in atherosclerosis will facilitate cell-based mapping of novel interventional targets with direct functional relevance for the treatment of human diseas

    Marginal Agricultural Land Low-Input Systems for Biomass Production

    Get PDF
    This study deals with approaches for a social-ecological friendly European bioeconomy based on biomass from industrial crops cultivated on marginal agricultural land. The selected crops to be investigated are: Biomass sorghum, camelina, cardoon, castor, crambe, Ethiopian mustard, giant reed, hemp, lupin, miscanthus, pennycress, poplar, reed canary grass, safflower, Siberian elm, switchgrass, tall wheatgrass, wild sugarcane, and willow. The research question focused on the overall crop growth suitability under low-input management. The study assessed: (i) How the growth suitability of industrial crops can be defined under the given natural constraints of European marginal agricultural lands; and (ii) which agricultural practices are required for marginal agricultural land low-input systems (MALLIS). For the growth-suitability analysis, available thresholds and growth requirements of the selected industrial crops were defined. The marginal agricultural land was categorized according to the agro-ecological zone (AEZ) concept in combination with the marginality constraints, so-called ‘marginal agro-ecological zones’ (M-AEZ). It was found that both large marginal agricultural areas and numerous agricultural practices are available for industrial crop cultivation on European marginal agricultural lands. These results help to further describe the suitability of industrial crops for the development of social-ecologically friendly MALLIS in Europe

    Perennial biomass cropping and use: Shaping the policy ecosystem in European countries

    Get PDF
    Demand for sustainably produced biomass is expected to increase with the need to provide renewable commodities, improve resource security and reduce greenhouse gas emissions in line with COP26 commitments. Studies have demonstrated additional environmental benefits of using perennial biomass crops (PBCs), when produced appropriately, as a feedstock for the growing bioeconomy, including utilisation for bioenergy (with or without carbon capture and storage). PBCs can potentially contribute to Common Agricultural Policy (CAP) (2023–27) objectives provided they are carefully integrated into farming systems and landscapes. Despite significant research and development (R&D) investment over decades in herbaceous and coppiced woody PBCs, deployment has largely stagnated due to social, economic and policy uncertainties. This paper identifies the challenges in creating policies that are acceptable to all actors. Development will need to be informed by measurement, reporting and verification (MRV) of greenhouse gas emissions reductions and other environmental, economic and social metrics. It discusses interlinked issues that must be considered in the expansion of PBC production: (i) available land; (ii) yield potential; (iii) integration into farming systems; (iv) R&D requirements; (v) utilisation options; and (vi) market systems and the socio-economic environment. It makes policy recommendations that would enable greater PBC deployment: (1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; (2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low-carbon bioenergy and bioproducts; (3) support innovation in biomass utilisation value chains; and (4) continue long-term, strategic R&D and education for positive environmental, economic and social sustainability impacts
    • 

    corecore