64 research outputs found

    Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington’s disease

    Get PDF
    Huntington’s disease (HD) is a polyglutamine (polyQ) disease caused by aberrant expansion of the polyQ tract in Huntingtin (HTT). While motor impairment mediated by polyQ-expanded HTT has been intensively studied, molecular mechanisms for nonmotor symptoms in HD, such as psychiatric manifestations, remain elusive. Here we have demonstrated that HTT forms a ternary protein complex with the scaffolding protein DISC1 and cAMP-degrading phosphodiesterase 4 (PDE4) to regulate PDE4 activity. We observed pathological cross-seeding between DISC1 and mutant HTT aggregates in the brains of HD patients as well as in a murine model that recapitulates the polyQ pathology of HD (R6/2 mice). In R6/2 mice, consequent reductions in soluble DISC1 led to dysregulation of DISC1-PDE4 complexes, aberrantly increasing the activity of PDE4. Importantly, exogenous expression of a modified DISC1, which binds to PDE4 but not mutant HTT, normalized PDE4 activity and ameliorated anhedonia in the R6/2 mice. We propose that cross-seeding of mutant HTT and DISC1 and the resultant changes in PDE4 activity may underlie the pathology of a specific subset of mental manifestations of HD, which may provide an insight into molecular signaling in mental illness in general

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    The cAMP-specific phosphodiesterase PDE4A5 is cleaved downstream of its SH3 interaction domain by caspase-3 : consequences for altered intracellular distribution

    No full text
    The unique N-terminal region of the cAMP-specific phosphodiesterase PDE4A5, which confers an ability to bind to certain protein SH3 domains, is cleaved during apoptosis in both Rat-1 fibroblasts and PC12 cells. Cleavage was abolished by the caspase-3-selective inhibitor, z-DEVD-CHO but not the caspase-1 selective inhibitor, z-YVAD-CHO. Caspase-3 treatment of PDE4A5, expressed either transiently in COS cells or generated in vitro by coupled transcription translation, generated a similar cleavage product of 100 kDa compared with the native 110-kDa PDE4A5. This product could be detected immunochemically with an antibody raised to a C-terminal PDE4A5 peptide but not an antibody raised to the N terminus of PDE4A5, indicating that caspase-3 caused N-terminal cleavage of PDE4A5. Deletion of the putative caspase-3 cleavage site, (69)DAVD(72), in PDE4A5, or generation of either the D72A or the D69A mutants, ablated the ability of caspase-3 to cause cleavage. The N-terminal truncate PDE4A5-DeltaP3 was engineered to mimic the caspase-cleaved product of PDE4A5. This showed altered catalytic activity and, unlike PDE4A5, was unable to interact with the SH3 domain of the tyrosyl kinase, LYN. Although both PDE4A5 and PDE4A5-DeltaP3 were localized at cell cortical regions (ruffles), the distinct perinuclear association noted for both PDE4A5 and LYN was not seen for PDE4A5-DeltaP3. Staurosporine-induced apoptosis caused a marked redistribution of PDE4A5 but not PDE4A8 in stably transfected Rat-1 cells. The PDE4-selective inhibitor, rolipram together with the adenylyl cyclase activator forskolin, caused a synergistic increase in the apoptosis of Rat-1 cells. Overexpression of PDE4A5 in Rat-1 cells protected against staurosporine-induced apoptosis in contrast to overexpression of PDE4A8, which potentiated apoptosis. PDE4A5 may be the sole PDE4 family member to provide a substrate for caspase-3 cleavage and this action serves to remove the SH3 binding domain that is unique to this isoform within the PDE4A family and to alter its intracellular targeting
    • …
    corecore