25 research outputs found

    Synthesis, spectral, antitumor and antimicrobial studies on Cu(II) complexes of purine and triazole Schiff base derivatives

    Get PDF
    AbstractA series of copper (II) complexes of Schiff bases derived from 7H-2,6-diaminopurine and 4H-3,5-diamino-1,2,4-triazole with 2-pyridinecarbaldehyde, salicylaldehyde, 2,4-dihydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde have been prepared. The donor atoms and the possible geometry of the complexes were investigated by means of elemental and thermal analyses, molar conductance, magnetic moment, UV–Vis, IR, ESR and mass spectra. The ligands behaved as tetradentate, coordinating through the nitrogen atom of the azomethine group and the nearest nitrogen atom to it or oxygen atom of α-hydroxyl group. The results of simultaneous DTA & TGA analyses of the complexes showed the final degradation product for these complexes is CuO. The spectral studies confirmed a four coordinate environment around the metal ion. The obtained results were supported by 3D molecular modeling of complexes using molecular mechanics (MM+) and semiempirical molecular orbital calculations (PM3). These complexes were also tested for their in vitro antimicrobial activities against some bacterial and fungal strains. Complex 2 was investigated for its cyctotoxic effect against human breast cancer (MCF7), liver carcinoma (HEPG2) and colon carcinoma cell lines (HCT116). This compound exhibited a moderate activity against the tested cell lines with IC50 of 10.3, 9.8 and 8.7μg/ml against MCF7, HCT116 and HEPG2, respectively

    Nano-synthesis, characterization, modeling and molecular docking analysis of Mn (II), Co (II), Cr (III) and Cu (II) complexes with azo pyrazolone ligand as new favorable antimicrobial and antitumor agents

    No full text
    Novel nanosized Mn (II), Co (II), Cr (III) and Cu (II) complexes were synthesized with 2‐((5‐oxo‐1,3‐diphenyl‐4,5‐dihydro‐1H‐pyrazol‐4‐yl)diazenyl) benzoic acid, HL applying precipitation method. Their structures were characterized based on the elemental and thermal analyses, spectra (FT‐IR, UV–Vis, MS, ESR and XRD), conductivity and magnetic moment measurements. IR spectra offered that HL behaves as monobasic tri‐dentate ligand towards Mn (II), Cr (III) and Cu (II) and monobasic bi‐dentate towards Co (II). The XRD results unambiguously confirmed the crystalline nature and nano‐sized particles of Cu (II) complex while HL and other complexes exhibited amorphous phases. The magnetic moment data, UV–Vis and ESR spectra supported the formation of octahedral geometries for Mn (II), and Cr (III) complexes, whereas Co (II), and Cu (II) complexes showed tetrahedral arrangement. The activation parameters for the thermal degradation stages were theoretically calculated using TGA curves. The obtained data showed the inspected complexes as favorable antimicrobial drug candidates. The studied compounds were screened out for their antitumor and antimicrobial activities. The inspected compounds exhibited a reasonable antibacterial activity and weak antitumor efficacy. The in vitro results were confirmed using the in silico molecular docking analysis (docking server) applying x‐ray crystallographic structures of the proteins (4 m01, 3 t88, 1zap & 4ynt) from PDB (Protein Data Bank). HL and probably its complexes displayed adequate binding with the receptors of 4 m01, 3 t88, 1zap, and 4ynt microorganisms. The obtained data show the inspected complexes as favorable antimicrobial drug candidates
    corecore