116 research outputs found

    Preparation and characterisation of manganese, cobalt and zinc DNA nanoflowers with tuneable morphology, DNA content and size

    Get PDF
    Recently reported DNA nanoflowers are an interesting class of organic-inorganic hybrid materials which are prepared using DNA polymerases. DNA nanoflowers combine the high surface area and scaffolding of inorganic Mg2P2O7 nanocrystals with the targeting properties of DNA, whilst adding enzymatic stability and enhanced cellular uptake. We have investigated conditions for chemically modifying the inorganic core of these nanoflowers through substitution of Mg2+ with Mn2+, Co2+ or Zn2+ and have characterised the resulting particles. These have a range of novel nanoarchitectures, retain the enzymatic stability of their magnesium counterparts and the Co2+ and Mn2+ DNA nanoflowers have added magnetic properties. We investigate conditions to control different morphologies, DNA content, hybridisation properties, and size. Additionally, we show that DNA nanoflower production is not limited to Ф29 DNA polymerase and that the choice of polymerase can influence the DNA length within the constructs. We anticipate that the added control of structure, size and chemistry will enhance future application

    2'-Alkynylnucleotides: A Sequence- and Spin Label-Flexible Strategy for EPR Spectroscopy in DNA.

    Get PDF
    Electron paramagnetic resonance (EPR) spectroscopy is a powerful method to elucidate molecular structure through the measurement of distances between conformationally well-defined spin labels. Here we report a sequence-flexible approach to the synthesis of double spin-labeled DNA duplexes, where 2'-alkynylnucleosides are incorporated at terminal and internal positions on complementary strands. Post-DNA synthesis copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions with a variety of spin labels enable the use of double electron-electron resonance experiments to measure a number of distances on the duplex, affording a high level of detailed structural information

    2'-Alkynyl spin-labelling is a minimally perturbing tool for DNA structural analysis

    Get PDF
    Funding: Engineering and Physical Sciences Research Council [EP/M019195/1]; Engineering and Physical Sciences Research Council Studentship (to J.S.H.); Biotechnology and Biological Sciences Research Council [BB/J001694/2, BB/R021848/1]; ADTBio; University of Kentucky and NCI Cancer Center Support Grant [P30 CA177558]; The Carmen L. Buck Endowment; Emerging Fields Initiative of the Friedrich-Alexander-University of Erlangen-Nuremberg [Grant title ‘Chemistry in Live Cells’]; Wellcome Trust [099149/Z/12/Z]; Royal Society, University Research Fellowship (to J.E.L.). Funding for open access charge: University of Oxford.The determination of distances between specific points in nucleic acids is essential to understanding their behaviour at the molecular level. The ability to measure distances of 2–10 nm is particularly important: deformations arising from protein binding commonly fall within this range, but the reliable measurement of such distances for a conformational ensemble remains a significant challenge. Using several techniques, we show that electron paramagnetic resonance (EPR) spectroscopy of oligonucleotides spin-labelled with triazole-appended nitroxides at the 2′ position offers a robust and minimally perturbing tool for obtaining such measurements. For two nitroxides, we present results from EPR spectroscopy, X-ray crystal structures of B-form spin-labelled DNA duplexes, molecular dynamics simulations and nuclear magnetic resonance spectroscopy. These four methods are mutually supportive, and pinpoint the locations of the spin labels on the duplexes. In doing so, this work establishes 2′-alkynyl nitroxide spin-labelling as a minimally perturbing method for probing DNA conformation.Publisher PDFPeer reviewe

    Lighting Up DNA with the Environment-Sensitive Bright Adenine Analogue qAN4

    Get PDF
    The fluorescent adenine analogue qAN4 was recently shown to possess promising photophysical properties, including a high brightness as a monomer. Here we report the synthesis of the phosphoramidite of qAN4 and its successful incorporation into DNA oligonucleotides using standard solid-phase synthesis. Circular dichroism and thermal melting studies indicate that the qAN4-modification has a stabilizing effect on the B-form of DNA. Moreover, qAN4 base-pairs selectively with thymine with mismatch penalties similar to those of mismatches of adenine. The low energy absorption band of qAN4 inside DNA has its peak around 358 nm and the emission in duplex DNA is partly quenched and blue-shifted (ca. 410 nm), compared to the monomeric form. The spectral properties of the fluorophore also show sensitivity to pH; a property that may find biological applications. Quantum yields in single-stranded DNA range from 1-29 % and in duplex DNA from 1-7 %. In combination with the absorptive properties, this gives an average brightness inside duplex DNA of 275 M-1  cm-1 , more than five times higher than the most used environment-sensitive fluorescent base analogue, 2-aminopurine. Finally, we show that qAN4 can be used to advantage as a donor for interbase FRET applications in combination with adenine analogue qAnitro as an acceptor

    Gene assembly via one-pot chemical ligation of DNA promoted by DNA nanostructures

    Get PDF
    Current gene synthesis methods are driven by enzymatic reactions. Here we report the one-pot synthesis of a chemically-ligated gene from 14 oligonucleotides. The chemical ligation benefits from the highly efficient click chemistry approach templated by DNA nanostructures, and produces modified DNA that is compatible with polymerase enzymes

    Radiolabeled oligonucleotides targeting the RNA subunit of telomerase inhibit telomerase and induce DNA damage in telomerase-positive cancer cells

    Get PDF
    Telomerase is expressed in the majority (>85%) of tumours, but has restricted expression in normal tissues. Long-term telomerase inhibition in malignant cells results in progressive telomere shortening and reduction in cell proliferation. Here we report the synthesis and characterisation of radiolabeled oligonucleotides that target the RNA subunit of telomerase, hTR, simultaneously inhibiting enzymatic activity and delivering radiation intracellularly. Oligonucleotides complementary (match) and non-complementary (scramble or mismatch) to hTR were conjugated to diethylenetriaminepentaacetic dianhydride (DTPA), allowing radiolabeling with the Auger electron-emitting radionuclide indium-111 (111In). Match oligonucleotides inhibited telomerase activity with high potency which was not observed with scramble or mismatch oligonucleotides. DTPA-conjugation and 111In-labeling did not change telomerase inhibition. In telomerase-positive cancer cells, unlabeled match oligonucleotides had no effect on survival, however, 111In-labeled match oligonucleotides significantly reduced clonogenic survival and upregulated the DNA damage marker γH2AX. Minimal radiotoxicity and DNA damage was observed in telomerase-negative cells exposed to 111In-match oligonucleotides. Match oligonucleotides localised in close proximity to nuclear Cajal bodies in telomerase-positive cells. In comparison to match oligonucleotides, 111In-scramble or 111In-mismatch oligonucleotides demonstrated reduced retention and negligible impact on cell survival. This study indicates the therapeutic activity of radiolabeled oligonucleotides that specifically target hTR through potent telomerase inhibition and DNA damage induction in telomerase-expressing cancer cells, and paves way for the development of novel oligonucleotide radiotherapeutics targeting telomerase-positive cancers

    Getting DNA and RNA out of the dark with 2CNqA: a bright adenine analogue and interbase FRET donor

    Get PDF
    With the central role of nucleic acids there is a need for development of fluorophores that facilitate the visualization of processes involving nucleic acids without perturbing their natural properties and behaviour. Here, we incorporate a new analogue of adenine, 2CNqA, into both DNA and RNA, and evaluate its nucleobase-mimicking and internal fluorophore capacities. We find that 2CNqA displays excellent photophysical properties in both nucleic acids, is highly specific for thymine/uracil, and maintains and slightly stabilises the canonical conformations of DNA and RNA duplexes. Moreover, the 2CNqA fluorophore has a quantum yield in single-stranded and duplex DNA ranging from 10% to 44% and 22% to 32%, respectively, and a slightly lower one (average 12%) inside duplex RNA. In combination with a comparatively strong molar absorptivity for this class of compounds, the resulting brightness of 2CNqA inside double-stranded DNA is the highest reported for a fluorescent base analogue. The high, relatively sequence-independent quantum yield in duplexes makes 2CNqA promising as a nucleic acid label and as an interbase F\uf6rster resonance energy transfer (FRET) donor. Finally, we report its excellent spectral overlap with the interbase FRET acceptors qAnitro and tCnitro, and demonstrate that these FRET pairs enable conformation studies of DNA and RNA

    Synthesis, oligonucleotide incorporation and fluorescence properties in DNA of a bicyclic thymine analogue

    Get PDF
    Fluorescent base analogues (FBAs) have emerged as a powerful class of molecular reporters of location and environment for nucleic acids. In our overall mission to develop bright and useful FBAs for all natural nucleobases, herein we describe the synthesis and thorough characterization of bicyclic thymidine (bT), both as a monomer and when incorporated into DNA. We have developed a robust synthetic route for the preparation of the bT DNA monomer and the corresponding protected phosphoramidite for solid-phase DNA synthesis. The bT deoxyribonucleoside has a brightness value of 790 M−1cm−1in water, which is comparable or higher than most fluorescent thymine analogues reported. When incorporated into DNA, bT pairs selectively with adenine without perturbing the B-form structure, keeping the melting thermodynamics of the B-form duplex DNA virtually unchanged. As for most fluorescent base analogues, the emission of bT is reduced inside DNA (4.5- and 13-fold in single- and double-stranded DNA, respectively). Overall, these properties make bT an interesting thymine analogue for studying DNA and an excellent starting point for the development of brighter bT derivatives

    Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides.

    Get PDF
    Funder: University of CambridgeNatural photosystems use protein scaffolds to control intermolecular interactions that enable exciton flow, charge generation, and long-range charge separation. In contrast, there is limited structural control in current organic electronic devices such as OLEDs and solar cells. We report here the DNA-encoded assembly of π-conjugated perylene diimides (PDIs) with deterministic control over the number of electronically coupled molecules. The PDIs are integrated within DNA chains using phosphoramidite coupling chemistry, allowing selection of the DNA sequence to either side, and specification of intermolecular DNA hybridization. In this way, we have developed a "toolbox" for construction of any stacking sequence of these semiconducting molecules. We have discovered that we need to use a full hierarchy of interactions: DNA guides the semiconductors into specified close proximity, hydrophobic-hydrophilic differentiation drives aggregation of the semiconductor moieties, and local geometry and electrostatic interactions define intermolecular positioning. As a result, the PDIs pack to give substantial intermolecular π wave function overlap, leading to an evolution of singlet excited states from localized excitons in the PDI monomer to excimers with wave functions delocalized over all five PDIs in the pentamer. This is accompanied by a change in the dominant triplet forming mechanism from localized spin-orbit charge transfer mediated intersystem crossing for the monomer toward a delocalized excimer process for the pentamer. Our modular DNA-based assembly reveals real opportunities for the rapid development of bespoke semiconductor architectures with molecule-by-molecule precision.ERC Horizon 2020 (grant agreement No 670405 and No 803326) EPSRC Tier-2 capital grant EP/P020259/1. Winton Advanced Research Programme for the Physics of Sustainability. Simons Foundation (Grant 601946). Swedish research council, Vetenskapsrådet 2018-0023
    • …
    corecore