685 research outputs found

    A Logistic Mobile Application based on Internet of Things

    Get PDF
    Abstract-A Logistic Mobile Application is presented. The application is based on Internet of Things and combines a communication infrastructure and a High Performance Computing infrastructure in order to deliver mobile logistic services with high quality of service and adaptation to the dynamic nature of logistic operations

    A major root architecture QTL responding to water limitation in durum wheat

    Get PDF
    The optimal root system architecture (RSA) of a crop is context dependent and critical for efficient resource capture in the soil. Narrow root growth angle promoting deeper root growth is often associated with improved access to water and nutrients in deep soils during terminal drought. RSA, therefore is a drought-adaptive trait that could minimize yield losses in regions with limited rainfall. Here, GWAS for seminal root angle (SRA) identified seven marker-trait associations clustered on chromosome 6A, representing a major quantitative trait locus (qSRA-6A) which also displayed high levels of pairwise LD (r2 = 0.67). Subsequent haplotype analysis revealed significant differences between major groups. Candidate gene analysis revealed loci related to gravitropism, polar growth and hormonal signaling. No differences were observed for root biomass between lines carrying hap1 and hap2 for qSRA-6A, highlighting the opportunity to perform marker-assisted selection for the qSRA-6A locus and directly select for wide or narrow RSA, without influencing root biomass. Our study revealed that the genetic predisposition for deep rooting was best expressed under water-limitation, yet the root system displayed plasticity producing root growth in response to water availability in upper soil layers. We discuss the potential to deploy root architectural traits in cultivars to enhance yield stability in environments that experience limited rainfall

    Mucosal injury following short term tracheal intubation: a novel animal model and composite injury score

    Get PDF
    Objectives: Postintubation laryngotracheal injury is common. Assessment of histopathological changes currently requires animal models. We set about developing a viable, resource effective animal model to study these effects and to develop a detailed tissue injury score. Methods: Six pigs were anaesthetised using a standard regimen. We intubated the tracheas using a standard endotracheal tube modified to include optical sensors. Animals were anaesthetised for a duration of two to four hours, and their lungs were ventilated using a normoxic gas mixture. Following euthanasia, the tracheas were removed and underwent histological assessment by two independent veterinary pathologists. The histological lesions, including controls, were described and quantified, and two pathologists classified tissues according to a novel injury score. Results: Mean duration of tracheal intubation was 191 minutes (SD±41.6). In all except one animal, cuff pressures were maintained in the range of 25 – 45 cmH20. Histopathological findings in all study animals showed more extensive changes than previously described with short-term intubation. Changes were seen in all mucosal layers consistent with acute, suppurative and ulcerative tracheitis. The range of scores of the developed composite scoring system among the animals was wider than in earlier descriptions. There was a high percentage of agreement between both pathologists. Conclusions: We have described a novel tissue injury score to assess pathological changes following short term intubation in a viable animal model. The scoring system distinguished between the test animals as well as controls and may be appropriate for continuing study of intubation injury

    Evaluation of Durum Wheat Genotypes for Resistance against Root Rot Disease Caused by Moroccan Fusarium culmorum Isolates

    Get PDF
    Fusarium culmorum is one of the most important causal agents of root rot of wheat. In this study, 10 F. culmorum isolates were collected from farms located in five agro-ecological regions of Morocco. These were used to challenge 20 durum wheat genotypes via artificial inoculation of plant roots under controlled conditions. The isolate virulence was determined by three traits (roots browning index, stem browning index, and severity of root rot). An alpha-lattice design with three replicates was used, and the resulting ANOVA revealed a significant (P < 0.01) effect of isolate (I), genotype (G), and G × I interaction. A total of four response types were observed (R, MR, MS, and S) revealing that different genes in both the pathogen and the host were activated in 53% of interactions. Most genotypes were susceptible to eight or more isolates, while the Moroccan cultivar Marouan was reported resistant to three isolates and moderately resistant to three others. Similarly, the Australian breeding line SSD1479-117 was reported resistant to two isolates and moderately resistant to four others. The ICARDA elites Icaverve, Berghisyr, Berghisyr2, Amina, and Icaverve2 were identified as moderately resistant. Principal component analysis based on the genotypes responses defined two major clusters and two sub-clusters for the 10 F. culmorum isolates. Isolate Fc9 collected in Khemis Zemamra was the most virulent while isolate Fc3 collected in Haj-Kaddour was the least virulent. This work provides initial results for the discovery of differential reactions between the durum lines and isolates and the identification of novel sources of resistance

    Two Di-Leucine Motifs Regulate Trafficking of Mucolipin-1 to Lysosomes

    Get PDF
    Mutations in the mucolipin-1 gene have been linked to mucolipidosis type IV, a lysosomal storage disorder characterized by severe neurological and ophthalmologic abnormalities. Mucolipin-1 is a membrane protein containing six putative transmembrane domains with both its N- and C-termini localized facing the cytosol. To gain information on the sorting motifs that mediate the trafficking of this protein to lysosomes, we have generated chimeras in which the N- and C- terminal tail portions of mucolipin-1 were fused to a reporter gene. In this article, we report the identification of two separate di-leucine-type motifs that co-operate to regulate the transport of mucolipin-1 to lysosomes. One di-leucine motif is positioned at the N-terminal cytosolic tail and mediates direct transport to lysosomes, whereas the other di-leucine motif is found at the C-terminal tail and functions as an adaptor protein 2-dependent internalization motif. We have also found that the C-terminal tail of mucolipin-1 is palmitoylated and that this modification might regulate the efficiency of endocytosis. Finally, the mutagenesis of both di-leucine motifs abrogated lysosomal accumulation and resulted in cell-surface redistribution of mucolipin-1. Taken together, these results reveal novel information regarding the motifs that regulate mucolipin-1 trafficking and suggest a role for palmitoylation in protein sorting
    • …
    corecore