10 research outputs found

    Mapping of the Subglacial Topography of Folgefonna Ice Cap in Western Norway—Consequences for Ice Retreat Patterns and Hydrological Changes

    Get PDF
    Folgefonna consists of three ice caps which are rapidly retreating in response to warmer temperatures. The melting of Folgefonna has implications for meltwater drainage and hydropower production, as well as the potential for geohazards and impacts to tourism, the communities and infrastructures surrounding the glacier. To support future adaptation strategies, we need to know the subglacial topography of the ice caps to identify water divides and possible areas for geohazards. Therefore, we mapped the subglacial topography at Sørfonna, the largest of the Folgefonna ice caps, using an ice-penetrating radar (2.5 MHz antennas; 1,000 × 500 m grid). The results show a highly irregular subglacial landscape, with deep valleys and high mountain peaks. The maximum ice thickness is 570 m and the mean ice thickness is 190 m. We examined the retreat pattern of Sørfonna using the subglacial topography map in combination with a simple ice flow model and simulated the ice retreat 150 years into the future. We used two climate scenarios (one with a 1.5°C warming and a 3% increase in precipitation, and a second with a 3.5°C warming together with 15% increase in precipitation) and focused on how the glacial retreat will cause hydrological changes in the catchments surrounding the glacier. The main drainage pattern shifts during glacial retreat, with a larger proportion of southward drainage compared to the present day. The ice flow modelling also reveals that the southern part of Sørfonna is more durable during climate change whereas the thinner part of the ice cap, in the north, melts faster. We suggest that increased winter precipitation in a future warmer climate makes the southern part of Sørfonna more resilient than many other glaciers in southern Norway. The subglacial topography map and the retreat pattern also reveal areas that may accumulate water and could potentially generate a future glacial outburst flood. Sediments from distal glacier-fed lakes around Sørfonna have been used to constrain the thresholds identified on the subglacial topography map. Combining sedimentological evidence from distal glacier-fed lakes with the new subglacial topography map confirms that the retreat of specific outlet glaciers, such as Bondhusbreen, Buerbreen, and Møsevassbreen, will have a large impact on meltwater routing, as they are situated behind bedrock thresholds in the upper part of the glacier’s catchment area.publishedVersio

    Investigation on the character of the subglacial drainage systemin the lower part of the ablation area of Storglaciären, northernSweden

    No full text
    The study in this thesis concerns Storglaciären, a very well known and studied glacier in northern Sweden. The glacier has been an object for research since the endof the 19th century. During the meltseason of 2012 25 dyetracing experiments were executed. These experiments were conducted to investigate the internal drainage system of Storglaciären in the lower ablation area. Similar studies were done in 1989 by Regine Hock and Roger Leb Hooke (1993). The outcome of the study in 2012 has been compared with their results to see if any changes in the drainage systemhave occurred. The results have also been compared to the results of Seaberg etal. (1988) from their experiments in 1984 and 1985. Studies of glacier behaviour are important since they have a large impact on the local and global environment. Moreover it has been observed that smaller glaciers (such as Storglaciären), that are easier to reach and to work on, have similar behaviour as bigger glaciers, making them good objects for research (Jansson, 1996). The experiments were conducted between the 6th and 24th of august and executed by first injecting dye into moulins on the glacier and then measuring the concentration of dye in the proglacial streams merging out from the front of Storglaciären. Rhodamine WT was used as dye. Storglaciären has three main pro-glacialstreams named Nordjåkk, Centerjåkk and Sydjåkk. Nordjåkk merges from the northside and the other two from the south side of the glacier front. Measurements were in the beginning taken in all of the streams but since no concentration was visible in Nordjåkk the focus was at the end of the fieldperiod only at Centerjåkk and Sydjåkk, which both had detectable dye concentrations. Both manual and automatical measurements were done. Breakthrough curves (concentration vs. time) were plotted for each experimentand for both Centerjåkk and Sydjåkk. From these curves calculations were donefollowing the methods in Willis et al. (2011). The main parameters calculatedwere: transit velocity, dispersivity and dye recovery. Breakthrough curves were also modelled for each experiment using the method in Willis et al. (1990). Overall the drainage system in the lower part of the ablation area of Storglaciärenhas not changed signicantly during the past 20 years. But the drainage systemseems to be divided into dierent parts using both a straight channel system and a distributed system. The distributed system of 2012 seems to be more homogeneous than in 1989 but whether the system is braided or consists of a linked cavity systemis hard to tell. Differences seen this year compared to previous investigations are that the transition from an early to a late season drainage system occurred later in the meltseason. The dominating subglacial stream in 2012 was Centerjåkk and not Sydjåkk as in previous investigations (Nordjåkk dominated north as before). The meltseason lasted only a few weeks in 2012 because of the cold conditions and low precipitation. This may have had a big inuence on the behaviour of the glacier

    Glacier and ocean variability in Ata Sund, west Greenland, since 1400 CE

    Get PDF
    To improve knowledge of marine-terminating glaciers in western Greenland, marine sediment cores from the Ata Sund fjord system, hosting two outlet glaciers, Eqip Sermia and Kangilerngata Sermia, were investigated. The main objective was to reconstruct glacial activity and paleoceanographic conditions during the past 600 years. Ice-rafted debris (IRD) was quantified by wet-sieving sediment samples and by using a computed tomography scan. Variability in relative bottom water temperatures in the fjord was reconstructed using foraminiferal analysis. On the basis of this, three periods of distinct glacial regimes were identified: Period 1 (1380–1810 CE), which covers the culmination of the Little Ice Age (LIA) and is interpreted as having advanced glaciers with high IRD content. Period 2 (1810–1920 CE), the end of the LIA, which was characterised by a lowering of the glaciers’ calving flux in response to climate cooling. During Period 3 (1920–2014 CE), both glaciers retreated substantially to their present-day extent. The bottom water temperature started to decrease just before Period 2 and remained relatively low until just before the end of Period 3. This is interpreted as a local response to increased glacial meltwater input. Our study was compared with a study in Disko Bay, nearby Jakobshavn Glacier and the result shows that both of these Greenlandic marine-terminating glaciers are responding to large-scale climate change. However, the specific imprint on the glaciers and the different fjord waters in front of them result in contrasting glacial responses and sediment archives in their respective fjords

    Mapping of the Subglacial Topography of Folgefonna Ice Cap in Western Norway—Consequences for Ice Retreat Patterns and Hydrological Changes

    No full text
    Folgefonna consists of three ice caps which are rapidly retreating in response to warmer temperatures. The melting of Folgefonna has implications for meltwater drainage and hydropower production, as well as the potential for geohazards and impacts to tourism, the communities and infrastructures surrounding the glacier. To support future adaptation strategies, we need to know the subglacial topography of the ice caps to identify water divides and possible areas for geohazards. Therefore, we mapped the subglacial topography at Sørfonna, the largest of the Folgefonna ice caps, using an ice-penetrating radar (2.5 MHz antennas; 1,000 × 500 m grid). The results show a highly irregular subglacial landscape, with deep valleys and high mountain peaks. The maximum ice thickness is 570 m and the mean ice thickness is 190 m. We examined the retreat pattern of Sørfonna using the subglacial topography map in combination with a simple ice flow model and simulated the ice retreat 150 years into the future. We used two climate scenarios (one with a 1.5°C warming and a 3% increase in precipitation, and a second with a 3.5°C warming together with 15% increase in precipitation) and focused on how the glacial retreat will cause hydrological changes in the catchments surrounding the glacier. The main drainage pattern shifts during glacial retreat, with a larger proportion of southward drainage compared to the present day. The ice flow modelling also reveals that the southern part of Sørfonna is more durable during climate change whereas the thinner part of the ice cap, in the north, melts faster. We suggest that increased winter precipitation in a future warmer climate makes the southern part of Sørfonna more resilient than many other glaciers in southern Norway. The subglacial topography map and the retreat pattern also reveal areas that may accumulate water and could potentially generate a future glacial outburst flood. Sediments from distal glacier-fed lakes around Sørfonna have been used to constrain the thresholds identified on the subglacial topography map. Combining sedimentological evidence from distal glacier-fed lakes with the new subglacial topography map confirms that the retreat of specific outlet glaciers, such as Bondhusbreen, Buerbreen, and Møsevassbreen, will have a large impact on meltwater routing, as they are situated behind bedrock thresholds in the upper part of the glacier’s catchment area

    Mapping of the Subglacial Topography of Folgefonna Ice Cap in Western Norway—Consequences for Ice Retreat Patterns and Hydrological Changes

    No full text
    Folgefonna consists of three ice caps which are rapidly retreating in response to warmer temperatures. The melting of Folgefonna has implications for meltwater drainage and hydropower production, as well as the potential for geohazards and impacts to tourism, the communities and infrastructures surrounding the glacier. To support future adaptation strategies, we need to know the subglacial topography of the ice caps to identify water divides and possible areas for geohazards. Therefore, we mapped the subglacial topography at Sørfonna, the largest of the Folgefonna ice caps, using an ice-penetrating radar (2.5 MHz antennas; 1,000 × 500 m grid). The results show a highly irregular subglacial landscape, with deep valleys and high mountain peaks. The maximum ice thickness is 570 m and the mean ice thickness is 190 m. We examined the retreat pattern of Sørfonna using the subglacial topography map in combination with a simple ice flow model and simulated the ice retreat 150 years into the future. We used two climate scenarios (one with a 1.5°C warming and a 3% increase in precipitation, and a second with a 3.5°C warming together with 15% increase in precipitation) and focused on how the glacial retreat will cause hydrological changes in the catchments surrounding the glacier. The main drainage pattern shifts during glacial retreat, with a larger proportion of southward drainage compared to the present day. The ice flow modelling also reveals that the southern part of Sørfonna is more durable during climate change whereas the thinner part of the ice cap, in the north, melts faster. We suggest that increased winter precipitation in a future warmer climate makes the southern part of Sørfonna more resilient than many other glaciers in southern Norway. The subglacial topography map and the retreat pattern also reveal areas that may accumulate water and could potentially generate a future glacial outburst flood. Sediments from distal glacier-fed lakes around Sørfonna have been used to constrain the thresholds identified on the subglacial topography map. Combining sedimentological evidence from distal glacier-fed lakes with the new subglacial topography map confirms that the retreat of specific outlet glaciers, such as Bondhusbreen, Buerbreen, and Møsevassbreen, will have a large impact on meltwater routing, as they are situated behind bedrock thresholds in the upper part of the glacier’s catchment area

    Lake Sediments Reveal Large Variations in Flood Frequency Over the Last 6,500 Years in South-Western Norway

    Get PDF
    Lake sediments can retain imprints of past floods, enabling reconstructions that span well-beyond instrumental time series. Time series covering thousands of years can document the natural range of flood variability, which is critical for understanding the potential causality between changing flood patterns and climate. Here, we analyzed sediments from Lake Sandvinvatnet in southwest Norway. Detailed environmental magnetic analyses of an 830 cm-long sediment core covering the last 6,500 years captured decadal scale trends in local flood frequency. Magnetic susceptibility (MS) assessments were carried out both on split cores and individual samples to track variability in sedimentary influx; the ratios of MS measured at 77 and 293 K (MS ratios) provided information on potential changes in source regions. The results suggested that sediments from the Buerdalen valley dominate the signal in the core, and the amount of ferromagnetic (high MS) carriers increases during flood events. These carriers were assumed to be transported from slope deposits in Buerdalen during rainstorm-triggered flood events. The reconstructed flood frequency, based on sediment layers with ferromagnetic carriers, showed high variability over the past 6,500 years, and the finding was validated by overlapping with known historical floods in the area. We observed periods with a high frequency of extreme floods (4,100–3,140 cal. yr BP) compared with intervals with a few or no extreme floods (6,050–4,100 cal. yr BP). Floods in this region are commonly a result of intense rain events during fall and snow and glacial melt during late spring and summer. The systematic frequency changes during the past 6,500 years suggest a certain persistency in the processes that cause floods, where mean trends in summer temperature and precipitation may have played a role

    Lake sediments reveal large variations in flood frequency over the last 6,500 years in south-western Norway

    No full text
    Lake sediments can retain imprints of past floods, enabling reconstructions that span well beyond instrumental time series. Time series covering thousands of years can document the natural range of flood variability, which is critical for understanding the potential causality between changing flood patterns and climate. Here, we analyzed sediments from Lake Sandvinvatnet in southwest Norway. Detailed environmental magnetic analyses of an 830cm-long sediment core covering the last 6,500 years captured decadal scale trends in local flood frequency. Magnetic susceptibility (MS) assessments were carried out both on split cores and individual samples to track variability in sedimentary influx; the ratios of MS measured at 77 K and 293 K (MS ratios) provided information on potential changes in source regions. The results suggested that sediments from the Buerdalen valley dominate the signal in the core, and the amount of ferromagnetic (high MS) carriers increases during flood events. These carriers were assumed to be transported from slope deposits in Buerdalen during rainstorm-triggered flood events. The reconstructed flood frequency, based on sediment layers with ferromagnetic carriers, showed high variability over the past 6,500 years, and the finding was validated by overlapping with known historical floods in the area. We observed periods with a high frequency of extreme floods (4100-3140 cal. yr BP) compared with intervals with a few or no extreme floods (6050-4100 cal. yr BP). Floods in this region are commonly a result of intense rain events during fall and snow and glacial melt during late spring and summer. The systematic frequency changes during the past 6,500 years suggest a certain persistency in the processes that cause floods, where mean trends in summer temperature and precipitation may have played a role

    Glacier and ocean variability in Ata Sund, west Greenland, since 1400 CE

    Get PDF
    International audienceTo improve knowledge of marine-terminating glaciers in western Greenland, marine sediment cores from the Ata Sund fjord system, hosting two outlet glaciers, Eqip Sermia and Kangilerngata Sermia, were investigated. The main objective was to reconstruct glacial activity and paleoceanographic conditions during the past 600 years. Ice-rafted debris (IRD) was quantified by wet-sieving sediment samples and by using a computed tomography scan. Variability in relative bottom water temperatures in the fjord was reconstructed using foraminiferal analysis. On the basis of this, three periods of distinct glacial regimes were identified: Period 1 (1380–1810 CE), which covers the culmination of the Little Ice Age (LIA) and is interpreted as having advanced glaciers with high IRD content. Period 2 (1810–1920 CE), the end of the LIA, which was characterised by a lowering of the glaciers’ calving flux in response to climate cooling. During Period 3 (1920–2014 CE), both glaciers retreated substantially to their present-day extent. The bottom water temperature started to decrease just before Period 2 and remained relatively low until just before the end of Period 3. This is interpreted as a local response to increased glacial meltwater input. Our study was compared with a study in Disko Bay, nearby Jakobshavn Glacier and the result shows that both of these Greenlandic marine-terminating glaciers are responding to large-scale climate change. However, the specific imprint on the glaciers and the different fjord waters in front of them result in contrasting glacial responses and sediment archives in their respective fjords

    Glacier and ocean variability in Ata Sund, west Greenland, since 1400 CE

    No full text
    To improve knowledge of marine-terminating glaciers in western Greenland, marine sediment cores from the Ata Sund fjord system, hosting two outlet glaciers, Eqip Sermia and Kangilerngata Sermia, were investigated. The main objective was to reconstruct glacial activity and paleoceanographic conditions during the past 600 years. Ice-rafted debris (IRD) was quantified by wet-sieving sediment samples and by using a computed tomography scan. Variability in relative bottom water temperatures in the fjord was reconstructed using foraminiferal analysis. On the basis of this, three periods of distinct glacial regimes were identified: Period 1 (1380–1810 CE), which covers the culmination of the Little Ice Age (LIA) and is interpreted as having advanced glaciers with high IRD content. Period 2 (1810–1920 CE), the end of the LIA, which was characterised by a lowering of the glaciers’ calving flux in response to climate cooling. During Period 3 (1920–2014 CE), both glaciers retreated substantially to their present-day extent. The bottom water temperature started to decrease just before Period 2 and remained relatively low until just before the end of Period 3. This is interpreted as a local response to increased glacial meltwater input. Our study was compared with a study in Disko Bay, nearby Jakobshavn Glacier and the result shows that both of these Greenlandic marine-terminating glaciers are responding to large-scale climate change. However, the specific imprint on the glaciers and the different fjord waters in front of them result in contrasting glacial responses and sediment archives in their respective fjords
    corecore