38 research outputs found

    Thiamin dynamics during the adult life cycle of Atlantic salmon (Salmo salar)

    Get PDF
    Thiamin is an essential water-soluble B vitamin known for its wide range of metabolic functions and antioxidant properties. Over the past decades, reproductive failures induced by thiamin deficiency have been observed in several salmonid species worldwide, but it is unclear why this micronutrient deficiency arises. Few studies have compared thiamin concentrations in systems of salmonid populations with or without documented thiamin deficiency. Moreover, it is not well known whether and how thiamin concentration changes during the marine feeding phase and the spawning migration. Therefore, samples of Atlantic salmon (Salmo salar) were collected when actively feeding in the open Baltic Sea, after the sea migration to natal rivers, after river migration, and during the spawning period. To compare populations of Baltic salmon with systems without documented thiamin deficiency, a population of landlocked salmon located in Lake VĂ€nern (Sweden) was sampled as well as salmon from Norwegian rivers draining into the North Atlantic Ocean. Results showed the highest mean thiamin concentrations in Lake VĂ€nern salmon, followed by North Atlantic, and the lowest in Baltic populations. Therefore, salmon in the Baltic Sea seem to be consistently more constrained by thiamin than those in other systems. Condition factor and body length had little to no effect on thiamin concentrations in all systems, suggesting that there is no relation between the body condition of salmon and thiamin deficiency. In our large spatiotemporal comparison of salmon populations, thiamin concentrations declined toward spawning in all studied systems, suggesting that the reduction in thiamin concentration arises as a natural consequence of starvation rather than to be related to thiamin deficiency in the system. These results suggest that factors affecting accumulation during the marine feeding phase are key for understanding the thiamin deficiency in salmonids. Atlantic salmon, Baltic Sea, M74 syndrome, Salmon life cycle, Thiamin, Thiamin deficiencypublishedVersio

    High major histocompatibility complex class I polymorphism despite bottlenecks in wild and domesticated populations of the zebra finch ()

    Get PDF
    Background Two subspecies of zebra finch, Taeniopygia guttata castanotis and T. g. guttata are native to Australia and the Lesser Sunda Islands, respectively. The Australian subspecies has been domesticated and is now an important model system for research. Both the Lesser Sundan subspecies and domesticated Australian zebra finches have undergone population bottlenecks in their history, and previous analyses using neutral markers have reported reduced neutral genetic diversity in these populations. Here we characterize patterns of variation in the third exon of the highly variable major histocompatibility complex (MHC) class I α chain. As a benchmark for neutral divergence, we also report the first mitochondrial NADH dehydrogenase 2 (ND2) sequences in this important model system. Results Despite natural and human-mediated population bottlenecks, we find that high MHC class I polymorphism persists across all populations. As expected, we find higher levels of nucleotide diversity in the MHC locus relative to neutral loci, and strong evidence of positive selection acting on important residues forming the peptide-binding region (PBR). Clear population differentiation of MHC allele frequencies is also evident, and this may be due to adaptation to new habitats and associated pathogens and/or genetic drift. Whereas the MHC Class I locus shows broad haplotype sharing across populations, ND2 is the first locus surveyed to date to show reciprocal monophyly of the two subspecies. Conclusions Despite genetic bottlenecks and genetic drift, all surveyed zebra finch populations have maintained high MHC Class I diversity. The diversity at the MHC Class I locus in the Lesser Sundan subspecies contrasts sharply with the lack of diversity in previously examined neutral loci, and may thus be a result of selection acting to maintain polymorphism. Given uncertainty in historical population demography, however, it is difficult to rule out neutral processes in maintaining the observed diversity. The surveyed populations also differ in MHC Class I allele frequencies, and future studies are needed to assess whether these changes result in functional immune differences

    State-dependent capital and income breeding : a novel approach to evaluating individual strategies with stable isotopes

    Get PDF
    Background: Species-specific strategies for financing the costs of reproduction are well understood, forming a continuum ranging from high to low reliance on stored nutrients. Animals relying mostly on stored reserves are termed 'capital breeders', whereas 'income breeders' rely mostly on concurrent intake when financing the costs of reproduction. The role and adaptive value of individual variation in these strategies remain elusive. Life-history theory posits that capital breeding should be favoured when offspring reproductive value peaks, typically occurring early in the season, and that current income should increasingly be used with progressing season. Because resource limitation may hamper flexible resource allocation, a corollary prediction is that only good-condition individuals may show the expected seasonal shift in resource use. To test this prediction, we examined stable isotopes (delta C-13 and delta N-15) in blood and lipid-free egg yolk of breeding eider females (Somateria mollissima) from the Baltic Sea to assess the role of individual variation in the use of proteins from local diet vs. stored reserves. Results: We show for the first time that individuals from a single population differ in their utilization of stored reserves and concurrent intake to finance the costs of reproduction. Consistent with our prediction, heavy females predominantly used stored reserves for producing egg yolks early in the season, increasingly relying on local feeding with later onset of breeding, whereas light females showed no seasonal change in allocation strategy. Conclusions: Stable isotope profiling at the individual level is a powerful tool for monitoring relative changes in investment strategies through time, showing promise as an early warning indicator of ecological change in food webs.Peer reviewe

    Modeling vitamin B1 transfer to consumers in the aquatic food web

    Get PDF
    Vitamin B-1 is an essential exogenous micronutrient for animals. Mass death and reproductive failure in top aquatic consumers caused by vitamin B-1 deficiency is an emerging conservation issue in Northern hemisphere aquatic ecosystems. We present for the first time a model that identifies conditions responsible for the constrained flow of vitamin B-1 from unicellular organisms to planktivorous fishes. The flow of vitamin B-1 through the food web is constrained under anthropogenic pressures of increased nutrient input and, driven by climatic change, increased light attenuation by dissolved substances transported to marine coastal systems. Fishing pressure on piscivorous fish, through increased abundance of planktivorous fish that overexploit mesozooplankton, may further constrain vitamin B-1 flow from producers to consumers. We also found that key ecological contributors to the constrained flow of vitamin B-1 are a low mesozooplankton biomass, picoalgae prevailing among primary producers and low fluctuations of population numbers of planktonic organisms
    corecore