104 research outputs found

    New insights into solvent-induced structural changes of C-13 labelled metal-organic frameworks by solid state NMR

    Get PDF
    Selective C-13-labelling of carboxylate carbons in the linker molecules of flexible metal-organic frameworks (MOFs) makes solid-state NMR spectroscopy very powerful to investigate solvent-induced local structural changes as demonstrated by C-13 and H-1 NMR spectroscopy on the pillared layer MOF DUT-8(Ni). Selective identification of polar solvent-node interactions becomes feasible

    Impact of Defects and Crystal Size on Negative Gas Adsorption in DUT-49 Analyzed by in Situ <sup>129</sup>Xe NMR Spectroscopy

    Get PDF
    The origin of crystal-size-dependent adsorption behavior of flexible metal-organic frameworks is increasingly studied. In this contribution, we probe the solid-fluid interactions of DUT-49 crystals of different size by in situ 129Xe NMR spectroscopy at 200 K. With decreasing size of the crystals, the average solid-fluid interactions are found to decrease reflected by a decrease in chemical shift of adsorbed xenon from 230 to 200 ppm, explaining the lack of adsorption-induced transitions for smaller crystals. However, recent studies propose that these results can also originate from the presence of lattice defects. To investigate the influence of defects on the adsorption behavior of DUT-49, we synthesized a series of samples with tailored defect concentrations and characterized them by in situ 129Xe NMR. In comparison to the results obtained for crystals with different size, we find pronounced changes of the adsorption behavior and influence of the chemical shift only for very high concentrations of defects, which further emphasizes the important role of particle size phenomena

    Poly(benzimidazobenzophenanthroline)-Ladder-Type Two-Dimensional Conjugated Covalent Organic Framework for Fast Proton Storage

    Get PDF
    Electrochemical proton storage plays an essential role in designing next-generation high-rate energy storage devices, e.g., aqueous batteries. Two-dimensional conjugated covalent organic frameworks (2D c-COFs) are promising electrode materials, but their competitive proton and metal-ion insertion mechanisms remain elusive, and proton storage in COFs is rarely explored. Here, we report a perinone-based poly(benzimidazobenzophenanthroline) (BBL)-ladder-type 2D c-COF for fast proton storage in both a mild aqueous Zn-ion electrolyte and strong acid. We unveil that the discharged C−O− groups exhibit largely reduced basicity due to the considerable π-delocalization in perinone, thus affording the 2D c-COF a unique affinity for protons with fast kinetics. As a consequence, the 2D c-COF electrode presents an outstanding rate capability of up to 200 A g−1 (over 2500 C), surpassing the state-of-the-art conjugated polymers, COFs, and metal–organic frameworks. Our work reports the first example of pure proton storage among COFs and highlights the great potential of BBL-ladder-type 2D conjugated polymers in future energy devices

    Mechanistic insights into the reversible lithium storage in an open porous carbon via metal cluster formation in all solid-state batteries

    Get PDF
    Porous carbons are promising anode materials for next generation lithium batteries due to their large lithium storage capacities. However, their highsloping capacity during lithiation and delithiation as well as capacity fading due to intense formation of solid electrolyte interphase (SEI) limit their gravimetric and volumetric energy densities. Herein we compare a microporous carbide derived carbon material (MPC) as promising future anode for all solid state batteries with a commercial high performance hard carbon anode. The MPC obtains high and reversible lithiation capacities of 1000 mAh g 1 carbon in half cells exhibiting an extended plateau region near 0 V vs. Li/LiĂŸ preferable for full cell application. The well defined microporosity of the MPC with a specific surface area of >1500 m2 g 1 combines well with the argyrodite type electrolyte (Li6PS5Cl) suppressing extensive SEI formation to deliver high coulombic efficiencies. Preliminary full cell measurements vs. nickel rich NMC cathodes (LiNi0.9Co0.05Mn0.05O2) provide a considerably improved average potential of 3.76 V leading to a projected energy density as high as 449 Wh kg 1 and reversible cycling for more than 60 cycles. 7Li Nuclear Magnetic Resonance spectroscopy was combined with ex situ Small Angle X ray Scattering to elucidate the storage mechanism of lithium inside the carbon matrix. The formation of extended quasi metallic lithium clusters after electrochemical lithiation was revealed

    A role for the cell-wall protein silacidin in cell size of the diatom Thalassiosira pseudonana

    Get PDF
    Diatoms contribute 20% of global primary production and form the basis of many marine food webs. Although their species diversity correlates with broad diversity in cell size, there is also an intraspecific cell-size plasticity due to sexual reproduction and varying environmental conditions. However, despite the ecological significance of the diatom cell size for food-web structure and global biogeochemical cycles, our knowledge about genes underpinning the size of diatom cells remains elusive. Here, a combination of reverse genetics, experimental evolution and comparative RNA8 sequencing analyses enabled us to identify a previously unknown genetic control of cell size in the diatom Thalassiosira pseudonana. In particular, the targeted deregulation of the expression of the cell-wall protein silacidin caused a significant increase in valve diameter. Remarkably, the natural downregulation of the silacidin gene transcript due to experimental evolution under low temperature also correlated with cell-size increase. Our data give first evidence for a genetically controlled regulation of cell size in Thalassiosira pseudonana and possibly other centric diatoms as they also encode the silacidin gene in their genomes

    International Symposium XeMAT2015 September 13-17, 2015 in Dresden, Germany: International Symposium XeMAT2015 September 13-17, 2015 in Dresden, Germany: Xenon/hyperpolarized noble gases in magnetic resonance

    Get PDF
    The present Book of Abstracts includes most of the contributions to the International Symposium XeMAT 2015, Xenon/hyperpolarized noble gases in magnetic resonance. This symposium took place from September 13-17, 2015 in Dresden in the new chemistry building of TU Dresden and covered all aspects of the use of xenon and hyperpolarized gases in magnetic resonance. This included for example materials science, biosensing, imaging, and molecular bioimaging as well as all aspects of gas hyperpolarization. The conference program included 15 invited lectures, 14 contributed talks as well as more than 20 posters

    Diatoms as potential “green” nanocomposite and nanoparticle synthesizers: challenges, prospects, and future materials applications

    Get PDF
    Diatoms are unicellular, eukaryotic microalgae inhabiting nearly all aquatic habitats. They are famous for their micro- and nanopatterned silicabased cell walls, which are envisioned for various technologic purposes. Within this review article, we summarize recent in vivo modifications of diatom biosilica with respect to the following questions: (i) Which metals are taken up by diatoms and eventually processed into nanoparticles (NPs)? (ii) Are these NPs toxic for the diatoms and––if so––what factors influence toxicity? (iii) What is the mechanism underlying NP synthesis and subsequent metabolism? (iv) How can the obtained materials be useful for materials science
    • 

    corecore