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Abstract
Diatoms are unicellular, eukaryotic microalgae inhabiting nearly all aquatic habitats. They are famous for their micro- and nanopatterned silica-
based cell walls, which are envisioned for various technologic purposes. Within this review article, we summarize recent in vivo modifications
of diatom biosilica with respect to the following questions: (i) Which metals are taken up by diatoms and eventually processed into nano-
particles (NPs)? (ii) Are these NPs toxic for the diatoms and––if so––what factors influence toxicity? (iii) What is the mechanism underlying
NP synthesis and subsequent metabolism? (iv) How can the obtained materials be useful for materials science?

Introduction
Diatoms[1–3] are unicellular, eukaryotic microalgae. With about
250 genera and an estimated number of about 100,000 species
or more, diatoms occur in nearly all aquatic habitats including
sea and fresh water. Most diatoms are photoautotrophic and
contribute significantly to the global carbon fixation. Their
organic constituents like carbohydrates, fatty acids, lipids,
and vitamins make them an important primary food source
for higher organisms. After cell death and decomposition, dia-
tom biosilica sediments at the sea floor thus forming huge
amounts of so-called diatomaceous earth over geologic periods.
Diatomaceous earth (diatomite) has long been used by the
industry as an inexpensive raw material. It serves as an abrasive
and filter material, sorbent, anti-caking agent, and insulation
material. Furthermore, diatoms biosynthesize and accumulate
lipids in the form of triacylglycerols. The resulting buoyancy
prevents the cell from sinking to the ground. Diatoms are inter-
esting as a potential renewable source for biofuel production
because triacylglycerols are important lipid storage com-
pounds.[4,5] In addition, two other constituents of algal biomass
are of special interest for industrial applications: carbohydrates
could be used for ethanol production by fermentation and pro-
teins for methane production via anaerobic gasification.[6]

Diatoms are famous for their beautiful, micro- and nanopat-
terned silica-based cell walls (see Fig. 1). Cell wall morphogen-
esis takes place under genetic control. Diatom species are thus
distinguishable by their specific cell wall structures. The bio-
chemical and biophysical processes underlying cell wall forma-
tion are not fully understood and remain a subject of ongoing
research.

Diatom biosilica is recently considered for various techno-
logic/nanotechnologic applications.[8–15] The “green” synthesis

of highly structured micro- and nanopatterned silica materials
by biologic self-assembly together with low expected costs
for culturing make diatom biosilica an attractive raw material
for industrial implementation. This material can be functional-
ized and tailored for special applications following two differ-
ent approaches, namely in vitro and in vivo. Numerous in vitro
modifications became meanwhile feasible, e.g., the conformal
conversion of diatom biosilica preserving the characteristic
shape and patterning into other materials, e.g., metals, metal
oxides, carbons, or polymers.[16–19] Other examples are nano-
particle (NP) decoration, e.g., for uses in catalysis[20–22] and
staining to enhance/create special optical properties[23,24]; just
to name a few of them.

In addition to these various in vitro modifications, increas-
ing efforts are made to functionalize diatom biosilica in vivo.
In general, this is possible following two different ways: (i)
by genetic modification and (ii) variation of the culture condi-
tions like compositional changes of the growth medium.
Genetic modifications are currently developed. An example is
the in vivo incorporation of special proteins like enzymes
into biosilica by the so-called Live Diatom Silica
Immobilization (LiDSI) method.[25,26] Compositional changes
of the growth medium can enhance the uptake and cell wall
attachment of “foreign” elements or NPs, often metals, thus
transforming biosilica into mixed materials or nanocomposites.
The latter will be in the focus of the present review paper
answering the following questions: (i) Which metals can be
taken up by diatoms and are eventually processed into NPs?
(ii) Are significant amounts of these metals incorporated into
the biosilica thus resulting in mixed materials/nanocomposites?
(iii) How can the obtained materials be useful for materials
science?
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In vivo modification of diatom biosilica
by metal incorporation
Diatoms take up monosilicic acid from their environment via
special transmembrane proteins, so-called silicon transport pro-
teins.[27,28] Chemically similar elements are taken up from the
environment and inserted into biosilica as well. This is, e.g.,
true for germanium[29,30] in the form of Ge(OH)4 and was
already exploited to synthesize GeO2-containing biosilica-
based materials.[30–33] After silicon starvation and subsequent
feeding with Si(OH)4 and Ge(OH)4, germanium is incorporated
and can influence the cell wall structure depending on the
species and Ge concentration. In analogy to the experiments
with germanium, titanate was also admixed to the growth
medium.[34] After H2O2 treatment––which removes organic
cell constituents––the samples still contained significant
amounts of Ge or Ti as shown by inductively coupled plasma
(ICP) analyses and scanning electron microscopy–energy dis-
persive spectroscopy (SEM–EDS) line measurements. It was
concluded that GeO2 and TiO2 are incorporated into the biosil-
ica. The authors suggest applications as dye-sensitized solar
cells for enhanced light trapping and structured photocatalysts
for such materials.[31,34] Further experiments on diatom biosil-
ica with metabolically inserted Ge revealed electrolumines-
cence and photoluminescence in the visible spectral range.[32]

Other foreign elements such as Al,[35–38] Ca,[39] Zn,[40,41] and
Fe[40,42] can also be incorporated into diatom biosilica. The

amount of Al accumulated in biosilica is strongly enhanced by
increasing the Al concentration in the growth medium.[37,38]

So far, the highest amount of silica-incorporated Al is observed
in Stephanopyxis turris. It corresponds to a molar Si:Al ratio
of 15 : 1 in the cell wall and was obtained by offering an initial
Si:Al ratio of 1 : 1 in the growth medium.[37] Gehlen et al.[36]

proposed Al incorporation into the silica network thus replac-
ing Si atoms. The resulting negatively charged SiO−Al sites
must then be compensated by positively charged ions such
as Ca2+ or Na+ (see Fig. 2). Infrared (IR) spectroscopy indeed
confirmed Al incorporation into the silica network.[37]

Moreover, charge compensating cations are exchangeable by
ammonium ions as demonstrated recently.[38] Subsequent
ammonia removal even results in the formation of catalytically
active Brønsted acid sites. Aluminum-enriched diatom biosilica
may therefore be a “green” raw material for future catalyst
production.[38]

Zinc and iron are also incorporated into diatom biosil-
ica[40–42], but only at relatively low concentrations. The amount
of biosilica-incorporated Zn nevertheless correlates with the
amount of Zn2+ offered in the growth medium.[40] In contrast,
the amount of strongly biosilica-associated iron does not corre-
late with the Fe3+ concentration in the growth medium.[40,42]

For the diatom species S. turris, almost constant molar Si:Fe
ratios of about 500 : 1 were usually observed independent of
the iron concentration in the growth medium.[42] Even lower

Figure 1. SEM images of different diatom species. (a) Cyclotella sp., (b) Aulacoseira granulate, (c) Stephanodiscus niagarae, (d) Eucampia zodiacus, (e)
Amphora perpusilla, (f) Thalassiosira pseudonana, (g) Cymatopleura solea, (h) Melosira varians, (i) Stephanodiscus minutulus, (j) Stephanopyxis turris, (k)
Lindavia bodanica, (l) Caloneis sp. Reproduced from Ref. 7 (Fischer, 2017).
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Fe concentrations were reported for Thalassiosira pseudonana
biosilica.[40] It is noteworthy that biosilica-attached iron almost
completely occurs as Fe2O3 clusters or NPs as could be shown
by electron paramagnetic resonance (EPR) spectroscopy in
combination with 29Si magic angle spinning nuclear magnetic
resonance (MAS NMR) spectroscopy (see Fig. 3). A minor
fraction, i.e., <5% of the biosilica-attached Fe is dispersed[42]

in contrast to the observations made for aluminum (see above).

In vivo NP biosynthesis by diatoms
NPs exhibit physical, chemical, and biologic properties that are
different from the bulk material.[43–46] They are considered to
play an essential role in the development of future electronics,
optoelectronics, and sensors and have already found applica-
tion in biomedicine, e.g., for drug delivery, diagnosis, and tar-
geted chemotherapy. However, industrial syntheses of NPs
often require organic solvents as well as harsh reducing and sta-
bilizing agents. Often, the synthesis reactions are carried out at
high temperatures and pressures. Increasing efforts are, there-
fore, made in order to develop “green,” environment-friendly
synthesis routes.[47–57] One possibility is the use of living
organisms or molecules extracted from organisms for NP syn-
thesis. Organisms such as plants, fungi, bacteria, and algae
offer ecologically friendly alternatives to current NP synthe-
ses.[49–56] So far, most in vivo experiments describe gold and
silver NP syntheses. NPs consisting of Cu, Fe3O4, ZnO, CdS,
SiO2, and ZnS could also be produced.[57] Compared with
other organisms, the exploration of diatoms for NP synthesis
is still at its beginning––but gains increasing interest.[57]

The commonly used scheme for in vivo NP biosynthesis by
diatoms is demonstrated in Fig. 4. After cell growth in “normal”
ASW, a metal salt solution is added to the culture. Cultures are
harvested, washed, and prepared for further analyses after cer-
tain incubation times.

Chakraborty et al.[58] reported gold accumulation by dia-
toms from the growth medium without analyzing size,
form, and composition of the reduced gold particles.
Schröfel et al.[59] added tetrachloroaurate solution to diatom
cultures and investigated the produced Au NPs by UV-Vis
spectroscopy, x-ray diffraction, and different types of
microscopy. Comparison of two different species revealed a

Figure 2. Structure of aluminum in the silica framework with Men+ as counter
ion. Reproduced from Ref. 38 (MDPI, 2017) (https://creativecommons.org/
licenses/by/4.0/).

Figure 3. Comparison of the EPR spectra of biosilica and iron-containing silicagel (pH 7) measured at (a) 300 K and (b) 10 K. Note the presence of a broad
signal at g = 2.3 in biosilica which disappears after cooling to 10 K. This signal is due to Fe2O3 clusters. In contrast, Fe is mainly dispersed in silicagel and gives
rise to signals at 4.3 and 2.0 which are also present at 10 K. Reproduced from Ref. 42 (Springer Nature, 2017). * denotes a weak Mn2+ signal due to a minor
impurity in the silicagel.
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species-dependent form and size distribution of the biosyn-
thesized Au NPs. Microscopic and spectroscopic results indi-
cated that these Au NPs occur either in the extracellular
polysaccharides or close to the siliceous cell walls.
Extracellular polysaccharides exhibit metal-binding sites
where NPs in the medium can easily bind.[59]

Similar Au–SiO2 nanocomposites could be produced and
separated from the cells by sonication in sodium citrate solution
and subsequent centrifugation. The NPs showed a broad range
of sizes between 5 and 45 nm with different shapes in transmis-
sion electron microscopy (TEM) images and were able to bind
algal DNA. These diatom-based Au–SiO2 nanocomposites are
proposed for biomedical applications such as photothermal
therapy and multimodal imaging.[60]

Another possible biomedical application is suggested for sil-
ver NPs synthesized from the aqueous extract of the diatom
Amphora-46. These NPs possess antimicrobial activity against
Gram-negative and Gram-positive bacteria. Diatom extracts

only mediate NP synthesis in the presence of light.[61] This
observation indicates the involvement of at least one light-
sensitive biomolecule in this process. After various extractions
and separations, UV–Vis analyses finally revealed fucoxanthin
as the responsible molecule for ion reduction to Ag NPs.[61]

Gold NP synthesis by Nitzschia sp. diatoms was reported by
Borase et al.[62] These NPs preferentially occur in close proxim-
ity to diatom cells thus indicating an interaction between NPs
and the organism. Separation of biosynthesized Au NPs and
subsequent Fourier transform IR spectroscopy indicate an
important role of proteins and polysaccharides for the metal
reduction and NP stabilization. Furthermore, Au NPs were suc-
cessfully coupled with the antibiotics penicillin and streptomy-
cin and showed an increased antibacterial activity.[25]

It is, however, difficult to answer the question where such
biosynthesized NPs are located. Only few methods are capable
of verifying the presence of NPs inside organisms. Methods
such as thin cut preparation influence the state of the cell and

Figure 4. Schematic procedure for NP biosynthesis by diatoms.

Figure 5. (a) SAED result of biosynthesized Au NPs (black) in comparison with the reflexes from Au crystals with the face-centered cubic space group Fm-3m
(blue) and (b) EDX line measurement of biosynthesized Au NPs. Adapted from Ref. 64 (Elsevier, 2017).
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are thus not decisive because the samples do not necessarily
reflect the native state and the location of the NPs may change
during the preparation procedure. In order to circumvent this
problem, three-dimensionally resolved surface-enhanced
Raman spectroscopy (SERS) can be used to localize biosynthe-
sized Au NPs in diatom cells in vivo. This technique was estab-
lished previously by Lahr and Vikesland to study the green alga
Pseudokirchneriella subcapitata[63] and could meanwhile also
be applied to diatoms. Figure 5 shows the results of energy-
dispersive x-ray spectroscopy (EDX) and selected area electron
diffraction (SAED) measurements confirming the presence of
Au NPs in an S. turris culture incubated with tetrachloroaurate
as described above.[64] The SERS effect is a local phenomenon
and occurs exclusively in the neighborhood of metal NPs.
Based on this fact, spatially resolved measurements of SERS
enhancements provide information about NP localization.
False color images encoding the measured SERS effect proved
that some of the biosynthesized NPs are indeed located inside
the intact diatom cells (see Fig. 6).[64]

Jeffryes et al.[14] describe different possibilities for Ag and
Au NP biosynthesis by photosynthetic microorganisms (see
Fig. 7). As diatoms are photosynthetic microorganisms, they
could follow one of the proposed pathways. So far, however,
none of the suggested mechanisms was experimentally vali-
dated. For intracellular NP biosynthesis, metal ions must
enter the cell before NP formation. They could either be
taken up via the Cu(I)-ATPase pathway [Fig. 7(a)] or simply

enter by diffusion [Fig. 7(b)]. Afterwards, metal ions can be
reduced by enzymes in the cytoplasm [Fig. 7(d)], electrons of
the photosynthetic electron transport chain [Fig. 7(e)], or by
photosynthetically produced redox mediators [Fig. 7(f)].
Such intracellularly biosynthesized NPs may then bind to
organelle membrane surfaces [Fig. 7(d)] or leave the cell
[Fig. 7(g)] and subsequently the surrounding extracellular
matrix [Fig. 7(h)].[14] On the other hand, metal ions could
also be reduced extracellularly before entering the cell [Fig. 7
(c)], e.g., by extracellular polymeric substances (EPS) contain-
ing suitable reducing agents. This poses the fundamental ques-
tion whether or not such presynthesized extracellular NPs can
subsequently be taken up by diatom cells, e.g., via endocytosis.

Mechanisms for NP uptake
To date, the knowledge about possible NP transport mecha-
nisms from the environment into the diatom cells is very lim-
ited, although various references indicate the intracellular
presence of NPs. The main problem is the experimental diffi-
culty to unequivocally determine the intracellular localization
of NPs in intact cells (see above). Suggestions for possible
NP uptake mechanisms in diatoms usually rely on the investi-
gations of other organisms. In general, NP uptake by cells
mainly involves two steps: (i) penetration through the cell
wall; (ii) intracellular transport and processing. This chapter
summarizes basic ideas for the uptake mechanisms derived
from the investigations of various cell types. These ideas
could possibly be relevant for diatoms as well.

Conner and Schmid describe the plasma membrane as a
dynamic structure separating the intracellular cytoplasm from
the extracellular environment. It controls the uptake and dis-
posal of various molecules of different sizes. Ions as well as
small essential molecules like amino acids can cross this
plasma membrane via membrane proteins acting as pumps or
channels. Larger molecules, however, need vesicles to be
inserted into the cell interior by endocytosis. A schematic over-
view over the fundamental endocytosis processes is presented
in Fig. 8.[65]

After endocytosis, the internalized compounds/NPs are
delivered to early endosomes providing a network of tubules
and vacuoles near the plasma membrane. Endosomes mature
and fuse finally with hydrolase vesicles thus forming the
endolysosome.[66,67]

The interactions between NPs and cells depend on the char-
ges of the NPs and/or their stabilizing groups/ligands.[68–70]

Neutral NPs hardly interact with cells. Negatively charged
NPs can be taken up by cells at least to a limited extent.
Cationic NPs bind to the cell surface and are internalized
much more efficiently than negatively charged or neutral NPs.
The uptake of cationic NPs mainly follows the so-called clathrin-
mediated pathway.[68–70] However, the so-called caveolae-
mediated pathway can also be chosen sometimes.[70] NPs
taken up via endocytosis remain mostly in endolysosomes.
Localization in these membrane-bound compartments prevents
the nanomaterial from entering the cytosol. Cationic NPs can

Figure 6. Three-dimensional image of an Stephanopyxis turris cell (22 µm ×
67 µm × 45 µm) with schematic chloroplasts (green) and SERS spectra (red)
from different perspectives. Adapted from Ref. 64 (Elsevier, 2017).

326▪ MRS COMMUNICATIONS • VOLUME 8 • ISSUE 2 • www.mrs.org/mrc
https://doi.org/10.1557/mrc.2018.34
Downloaded from https://www.cambridge.org/core. SLUB Dresden, on 15 Apr 2020 at 13:14:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1557/mrc.2018.34
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


also bind to negative groups on the cell surface and enter the cell
by direct cell membrane penetration leading to the formation of
holes in the lipid membrane bilayer. Consequently, the balance
between intracellular and extracellular compounds can be dis-
turbed leading to a visible toxic effect of the NPs on the
cell.[68,71] However, it was also reported that NPs are able to
enter the cell by penetration without visible hole formation.

The proposed explanation for this observation includes some
amphiphilic domains of NPs, which permit NP fusion with the
cell membrane without disruption. These NPs are able to pene-
trate through the bilayer similar to some peptide internalization
processes.[72] While most NPs stay close to the cell wall in endo-
lysosomes, several functional groups of NPs were shown to
leave the endolysosome and enter the cell cytosol. Brust and

Figure 7. Possible ways for transport and synthesis of Ag and Au NPs by photosynthetic microorganisms. Uptake of Ag+ into the cell by (a) Cu(I)-ATPase or (b)
diffusion. (c) Extracellular gold reduction by extracellular polymeric substances. (d) Binding of intracellular Au NPs to organelle membrane surfaces. Intracellular
gold reduction by photosynthetically produced (e) electrons or (f) redox mediators. (g) Export of Au NPs and (h) release of the Au NPs from the extracellular
matrix. Reproduced from Ref. 14 (Elsevier, 2015).

Figure 8. Different endocytic pathways for cellular uptake depending on the size, the nature of the cargo (ligands, receptors, and lipids), and the mechanism of
vesicle formation. Reproduced from Ref. 65 (Springer Nature, 2003).
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co-workers demonstrated that NPs stabilized with cell-
penetrating peptides entered the cytosol of human fibroblast
cells. It was hypothesized that these NPs reach the cytosol by
endosomal escape or by passing through the cell membrane.[73]

Apart from the NP charge, many other factors are known to
influence the rate and mechanism of NP uptake, depending on
the specific experimental conditions. Not only the cell type, but
also the molecular arrangement of surface chemical groups as
well as shape and size of the NPs lead to different interac-
tions.[72,74] As already described above, cells can also synthe-
size NPs from precursors in their environment. The uptake
mechanism for such biosynthesized NPs is even more difficult
to reveal as the stabilizing agents are not known in advance.

NP uptake by diatom cells
So far, different explanations for the toxicity of NPs were sug-
gested (see above). Toxicity probably depends on the intracel-
lular localization of NPs. The latter is, unfortunately, difficult to
determine in native cells (see above). Branco et al. have washed
a cell pellet with HNO3 to remove loosely bound Cd from
the frustule. After sonication and digestion of the cell pellet,
remaining Cd was considered as intracellular. It is supposed
that the metal––once inside the cell––is transported into the
vacuole via chelation with phytochelatins.[75] Other approaches
to detect intracellular NPs follow similar pathways. Cells are
washed with acids or metal chelators to remove the loosely
bound metal from the cell wall. Supernatant fractions are either
separated in subfractions via centrifugation or analyzed as one
batch for their metal content. The detected metal is assumed to
arise from the cell interior.[76,77]

Another interesting approach to demonstrate cellular uptake
of presynthesized NPs is described by Pletikapić et al. They
detected pore-like lesions in the valve region of diatom cells
and assigned them to NP penetration sites. The occurrence of
such lesions was interpreted as an evidence for the ability of
NPs to directly pass through the cell wall.[78]

Feurtet-Mazel et al.[79] suggest that the driving force induc-
ing NP biosynthesis from precursors in the growth medium
(see above) is a detoxification mechanism initiated by the cell
for self-protection against metal salt solutions. TEM images
obtained from ultrathin cuts provide first hints for the presence
of biosynthesized Au NPs also inside diatom cells, although the
presence of gold in the described intracellular NPs has not yet
been confirmed by elemental analysis.[79] The same method has
been applied previously for detecting presynthesized ZnO NPs
inside Phaeodactylum tricornutum cells. Only few ZnO NPs
were located inside the cell, while most of them were directly
attached to the cell walls. TEM cuts were prepared by fixation
of the diatom cells in glutaraldehyde/phosphate buffer, follow-
ing treatment with OsO4, dehydration, and final cutting into
80 nm slices using an ultramicrotome.[80] Furthermore, TEM
allowed detection of metallic Cd in ultrathin cuts of P. tricornu-
tum after incubation in Cd2+-containing growth medium.
Intracellular Cd gave rise to electrodense granulations, which

were interpreted as metal depositions sequestered by specific
molecules used for detoxification.[81]

Toxicity of presynthesized NPs
To obtain information about interactions of diatom cells with
NPs, presynthesized NPs are usually brought into contact
with living diatoms. Effects on cell viability and transforma-
tions of the NPs under the influence of diatom cultures are mon-
itored. In general, key factors determining the toxicity of NPs
are their chemical composition, size, surface, degree of dissolu-
tion, self-assembly, concentration, and aggregation behavior.
This multiplicity of factors explains why it is so far hardly pos-
sible to make clear and reliable predictions for the effects of dif-
ferent NPs upon organisms. Smaller NPs exhibit a higher
specific surface area increasing their reactivity. Consequently,
interactions with biomolecules and accumulation are enhanced,
both reducing the surface to volume ratio.[82] As agglomeration
affects NP toxicity, the cultivation medium––especially its salt
content––also represents an important factor.[83] The growth
medium can also contain various chelating substances, which
can bind metal ions. In this way, the NPs could be dissolved
in the growth medium.[84] The following chapters focus on
the influence of size and chemical composition of the NPs
upon their toxicity.

Toxicity can arise from the generation of reactive oxygen
species and resulting oxidative stress. Furthermore, dissolved
NP ions can occupy binding sites in proteins and affect the pro-
tein folding process resulting in changed protein functions.[82]

Manier et al. suggest that NPs in close contact with the cells
influence the transport of nutrients and metabolites across the
cell membrane. Spatial vicinity could also result in physical
damage like abrasive effects or indirect membrane damage
caused by oxidative stress.[85]

The influence of the chemical
composition of NPs upon toxicity
An important factor influencing toxicity is the chemical compo-
sition of the NPs. Usually, gold exhibits a relatively low toxic-
ity for organisms. However, nanostructured Au is more toxic
because the Au atoms are highly exposed and accessible.
Nevertheless, Au NPs have a lower toxicity compared with
Ag NPs in general.[86] Bielmyer-Fraser et al.[76] compare the
influence of various metal oxide (ZnO, AgO, and CuO) NPs
as well as of their metal ions upon the diatom Thalassiosira
weissflogii. Toxicity levels are similar for dissolved metals
and their nanoparticulate forms, especially for Ag and Cu.
After exposure to metal oxide NPs, the highest metal concentra-
tion was found in the diatom cell wall. After exposure to dis-
solved metals, the highest concentration was found in the
organelles and the endoplasmic reticulum. The authors explain
this observation by different mechanisms or rates of metal
uptake. Dissolved metals could be able to pass the cell wall
quickly through ion channels into the cell. In contrast, only
few NPs are able to enter the cell interior due to size
exclusion.[76]
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Branco et al. have analyzed the cell response of various bio-
chemical markers to the addition of Cd in different concentra-
tions to the diatom Nitzschia palea. The increasing amounts of
phytochelatins indicate that the cell initiates metal chelation as
a protection mechanism against intracellular Cd. After chela-
tion, Cd may be deposited in the vacuole thus preventing it
from interference with the cell metabolism.[75] CeO2 NPs are
not toxic for this diatom species in contrast to Cd. It is thus con-
cluded that the studied diatom species possesses effective pro-
tection mechanisms deactivating CeO2 NPs. In addition to the
afore-mentioned chelation by biosynthesized phytochelatins,
two other possible mechanisms are suggested: (i) the diatom
cell wall itself can act as a shield against toxic NPs. (ii) The
enhanced production of EPS may enable effective adsorption
of NPs thus preventing direct contact with the diatom cell
constituents.[87]

Verneuil et al.[88] demonstrated that N. palea is not only
immune against CeO2 NPs, but also against multi-walled car-
bon nanotubes (MWCNTs). Cell growth was inhibited in
early developmental stages, but recovered at the end of the
experiment. The authors explain this observation as follows.
In the early incubation phase, the cell relies on protection pro-
cesses and avoids cell division until the NPs are “disarmed.”
Additionally, MWCNTs agglomerate on the EPS. This sup-
ports the idea that EPS are part of the protection mechanisms
against NPs. It is suggested that EPS secretion also enables
the diatom to escape from NP-rich environments.[88] Note
that EPS seem to be involved in Ag+ detoxification either by
ion accumulation or by changing the subcellular metal
distribution.[89]

The influence of NP size upon toxicity
Various studies report size-dependent toxic effects of presyn-
thesized NPs upon diatoms. Burchardt et al. observed that
larger Ag NPs caused lower growth inhibition, and thus, less
toxicity than smaller NPs. This was explained by the small
pore size of the diatom cell wall, whereby only smaller NPs
are expected to enter the cell interior. These intracellular NPs
are believed to affect the cells more than extracellular ones.
Another explanation is the reduced bioavailability of larger
NPs caused by sedimentation.[84] In general, NP size is proven
to affect especially the rate and mechanism of cellular uptake.
Lower toxicity of larger NPs for diatoms is confirmed by
other authors as well.[80,90] However, it was also proven that
NPs partly dissolved in the growth medium. It is, therefore,
arguable, whether or not Ag NPs themselves are toxic for dia-
toms, because the toxicity may also be due to released silver
ions.[84,89]

Peng et al. studied the influence of ZnO NPs upon different
diatom species and demonstrated that 4–5% of the NPs dissolve
after 72 h independent of their concentration and morphology.
According to the authors, this phenomenon is due to Ostwald
ripening. It is, therefore, suggested that mainly the smaller
NPs dissolve and the remaining NPs are thus on average larger
and more homogeneous.[80] Size-dependent solubility of NPs is

explained by the Gibbs–Thomson effect.[91–93] This effect pro-
vides another explanation for the observation that bigger NPs
show a lower toxicity. Fast dissolving smaller NPs cause a
higher toxicity for diatom cells.

Taken together, it is not yet clear whether or not the toxicity
of NPs arises exclusively from released ions.[86] Furthermore,
free ions have a high affinity for algal surfaces and extracellular
extrudates. It is, therefore, likely that these ions are not detected
by the measurements of the amount of free ions in the
medium.[86] It should also be taken into account that toxicity
effects could be different for free and adsorbed ions.

Conclusion
Diatoms are interesting as a potential renewable source for var-
ious purposes, e.g., food and biofuel production. In addition,
algal carbohydrates could be useful for ethanol production by
fermentation and proteins for methane production via anaerobic
gasification. Given this fact, it is also interesting to evaluate the
potential technologic uses of the siliceous cell walls of diatoms
(biosilica). Considering the various possibilities to create bio-
silica with special, tailored functions described in this review,
in vivo modified diatom biosilica forms a promising source
for “green” material synthesis. Germanium- and titanium-
enriched biosilica might, e.g., be useful as dye-sensitized
solar cells for enhanced light trapping and structured photoca-
talysts. Aluminum-enriched biosilica might become a “green”
raw material for acid catalyst production. Moreover, diatoms
could be useful for noble metal NP or nanocomposite synthesis.
The “green” synthesis of such highly structured micro- and
nanopatterned materials by biologic self-assembly together
with potentially low costs for culturing make diatom biosilica
an attractive raw material for industrial implementation.
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copy characterization of silver nanoparticles interactions with marine dia-
tom cells and extracellular polymeric substance. J. Mol. Recognit. 25, 309
(2012).

79.A. Feurtet-Mazel, S. Mornet, L. Charron, N. Mesmer-Dudons,
R. Maury-Brachet, and M. Baudrimont: Biosynthesis of gold nanoparti-
cles by the living freshwater diatom Eolimna minima, a species developed
in river biofilms. Environ. Sci. Pollut. Res. 23, 4334 (2016).

80.X. Peng, S. Palma, N. S. Fisher, and S. S. Wong: Effect of morphology of
ZnO nanostructures on their toxicity to marine algae. Aquat. Toxicol. 102,
186 (2011).

81.E. Torres, A. Cid, C. Herrero, and J. Abalde: Effect of cadmium in growth,
ATP content, carbon fixation and ultrastructure in the marine diatom
Phaeodactylum tricornutum Bohlin. Water Air Soil Pollut. 117, 1 (2000).

82.Y.-N. Chang, M. Zhang, L. Xia, J. Zhang, and G. Xing: The toxic effects
and mechanisms of CuO and ZnO nanoparticles. Materials (Basel) 5,
2850 (2012).

83.C. A. García-Negrete, J. Blasco, M. Volland, T. C. Rojas, M. Hampel,
A. Lapresta-Fernández, M. C. J. De Haro, M. Soto, and A. Fernández:
Behaviour of Au-citrate nanoparticles in seawater and accumulation in
bivalves at environmentally relevant concentrations. Environ. Pollut.
174, 134 (2013).

84.A. D. Burchardt, R. N. Carvalho, A. Valente, P. Nativo, D. Gilliland, C.
P. Garc, R. Passarella, V. Pedroni, and T. Lettieri: Effects of silver nano-
particles in diatom Thalassiosira pseudonana and cyanobacterium
Synechococcus sp. Environ. Sci. Technol. 46, 11336 (2012).

85.N. Manier, A. Bado-Nilles, P. Delalain, O. Aguerre-Chariol, and
P. Pandard: Ecotoxicity of non-aged and aged CeO2 nanomaterials
towards freshwater microalgae. Environ. Pollut. 180, 63 (2013).

86. I. Moreno-Garrido, S. Pérez, and J. Blasco: Toxicity of silver and gold
nanoparticles on marine microalgae. Mar. Environ. Res. 111, 60 (2015).

87.A. Bour, F. Mouchet, L. Verneuil, L. Evariste, J. Silvestre, E. Pinelli, and
L. Gauthier: Toxicity of CeO2 nanoparticles at different trophic levels––
effects on diatoms, chironomids and amphibians. Chemosphere 120,
230 (2015).

88.L. Verneuil, J. Silvestre, F. Mouchet, E. Flahaut, J.-C. Boutonnet,
F. Bourdiol, T. Bortolamiol, D. Baqué, L. Gauthier, and E. Pinelli:
Multi-walled carbon nanotubes, natural organic matter, and the benthic
diatom Nitzschia palea: “a sticky story”. Nanotoxicology 9, 219 (2015).

89.A. Miao, K. A. Schwehr, C. Xu, S. Zhang, Z. Luo, A. Quigg, and P.
H. Santschi: The algal toxicity of silver engineered nanoparticles and
detoxification by exopolymeric substances. Environ. Pollut. 157, 3034
(2009).

90.L. Clément, C. Hurel, and N. Marmier: Toxicity of TiO2 nanoparticles to
cladocerans, algae, rotifers and plants––effects of size and crystalline
structure. Chemosphere 90, 1083 (2013).

91.P. Taylor: Ostwald ripening in emulsions. Adv. Colloid Interface Sci. 75,
107 (1998).

92.N. T. K. Thanh, N. Maclean, and S. Mahiddine: Mechanisms of nucleation
and growth of nanoparticles in solution. Chem. Rev. 114, 7610 (2014).

93.C. de M. Donegá: Nanoparticles––Workhorses of Nanoscience (Springer,
Berlin, Heidelberg, Germany, 2014).

Prospective Article

MRS COMMUNICATIONS • VOLUME 8 • ISSUE 2 • www.mrs.org/mrc ▪ 331
https://doi.org/10.1557/mrc.2018.34
Downloaded from https://www.cambridge.org/core. SLUB Dresden, on 15 Apr 2020 at 13:14:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1557/mrc.2018.34
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

	diatoms_as_potential_green_nanocomposite_and_nanoparticle_synthesizers_challenges_prospects_and_future_materials_applications-v
	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	Nathalie Pytlik, Eike Brunner
	Diatoms as potential “green” nanocomposite and nanoparticle synthesizers: challenges, prospects, and future materials applications

	diatoms_as_potential_green_nanocomposite_and_nanoparticle_synthesizers_challenges_prospects_and_future_materials_applications
	Diatoms as potential &ldquo;green&rdquo; nanocomposite and nanoparticle synthesizers: challenges, prospects, and future materials applications
	Introduction
	In vivo modification of diatom biosilica by metal incorporation
	In vivo NP biosynthesis by diatoms
	Mechanisms for NP uptake
	NP uptake by diatom cells
	Toxicity of presynthesized NPs
	The influence of the chemical composition of NPs upon toxicity
	The influence of NP size upon toxicity
	Conclusion
	Acknowledgment
	Statement of Responsibility
	Conflict of Interest Disclosure
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


