11 research outputs found

    Ecological Effects and Ecosystem Shifts Caused by Mass Mortality Events on Early Life Stages of Fish

    Get PDF
    Mass mortality events (MMEs) are a key concern for the management of marine ecosystems. Specific stages and species are at risk and the causes may be single or cumulative pressure from a range of sources including pollutants, anthropogenic climate change or natural variability. Identifying risk and quantifying effects of plausible scenarios including MMEs are key to stakeholders and a quest for scientists. MMEs affect the whole ecosystem, but are traditionally only studied in relation to specific species, disregarding ecological feedbacks. Here we use an end-to-end ecosystem model adapted to the Nordic and Barents seas to evaluate the species-specific and ecological impacts for 50 years following an MME. MMEs were modeled as 10, 50, or 90% reduced recruitment for cod, herring and haddock, individually or in combination. The MME scenarios were compared to a base case model run that includes the current fishing mortality. All species showed declines in population biomass following an MME, increasing in duration and severity with increasing mortality. Cod biomass rebounded to the base case level within 3–13 years post the MME independent of scenario, while neither haddock nor herring fully rebounded to base case levels within the considered time horizon. Haddock responded much more variably to the mortality scenarios than cod or herring, with some scenarios yielding much higher levels of biomass than the base case. Herring responded negatively to all scenarios, leading to lower herring biomass and a steeper decline of the species than seen in the base case due to persistent harvest pressure. Corresponding responses showed that the demersal guild biomass increased substantially, while the pelagic guild biomass declined. Few effects were observed on the other guilds, including the top predators. Ecosystem effects as measured by ecological indicators were greatest after 5 years, but persisted through the entire model run. Fishery indicators showed the same features, but the responses were stronger than for the ecosystem indicators. Taken together this indicates long-term, ecological response to MMEs that can be described as regime shifts, highlighting the importance of using ecosystem models when evaluating effects of MMEs.publishedVersio

    Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models

    Get PDF
    Ecosystem-based management (EBM) of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modeling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the global advances in ecosystem modeling to explore common opportunities and challenges for ecosystem-based management, including changes in ocean acidification, spatial management, and fishing pressure across eight Atlantis (atlantis.cmar.csiro.au) end-to-end ecosystem models. These models represent marine ecosystems from the tropics to the arctic, varying in size, ecology, and management regimes, using a three-dimensional, spatially-explicit structure parametrized for each system. Results suggest stronger impacts from ocean acidification and marine protected areas than from altering fishing pressure, both in terms of guild-level (i.e., aggregations of similar species or groups) biomass and in terms of indicators of ecological and fishery structure. Effects of ocean acidification were typically negative (reducing biomass), while marine protected areas led to both “winners” and “losers” at the level of particular species (or functional groups). Changing fishing pressure (doubling or halving) had smaller effects on the species guilds or ecosystem indicators than either ocean acidification or marine protected areas. Compensatory effects within guilds led to weaker average effects at the guild level than the species or group level. The impacts and tradeoffs implied by these future scenarios are highly relevant as ocean governance shifts focus from single-sector objectives (e.g., sustainable levels of individual fished stocks) to taking into account competing industrial sectors\u27 objectives (e.g., simultaneous spatial management of energy, shipping, and fishing) while at the same time grappling with compounded impacts of global climate change (e.g., ocean acidification and warming)

    BAKTRAK: Backtracking drifting objects using an iterative algorithm with a forward trajectory model

    Full text link
    The task of determining the origin of a drifting object after it has been located is highly complex due to the uncertainties in drift properties and environmental forcing (wind, waves and surface currents). Usually the origin is inferred by running a trajectory model (stochastic or deterministic) in reverse. However, this approach has some severe drawbacks, most notably the fact that many drifting objects go through nonlinear state changes underway (e.g., evaporating oil or a capsizing lifeboat). This makes it difficult to naively construct a reverse-time trajectory model which realistically predicts the earliest possible time the object may have started drifting. We propose instead a different approach where the original (forward) trajectory model is kept unaltered while an iterative seeding and selection process allows us to retain only those particles that end up within a certain time-space radius of the observation. An iterative refinement process named BAKTRAK is employed where those trajectories that do not make it to the goal are rejected and new trajectories are spawned from successful trajectories. This allows the model to be run in the forward direction to determine the point of origin of a drifting object. The method is demonstrated using the Leeway stochastic trajectory model for drifting objects due to its relative simplicity and the practical importance of being able to identify the origin of drifting objects. However, the methodology is general and even more applicable to oil drift trajectories, drifting ships and hazardous material that exhibit non-linear state changes such as evaporation, chemical weathering, capsizing or swamping. The backtracking method is tested against the drift trajectory of a life raft and is shown to predict closely the initial release position of the raft and its subsequent trajectory.Comment: 28 pages, 8 figures, 2 table

    Ecological Effects and Ecosystem Shifts Caused by Mass Mortality Events on Early Life Stages of Fish

    No full text
    Mass mortality events (MMEs) are a key concern for the management of marine ecosystems. Specific stages and species are at risk and the causes may be single or cumulative pressure from a range of sources including pollutants, anthropogenic climate change or natural variability. Identifying risk and quantifying effects of plausible scenarios including MMEs are key to stakeholders and a quest for scientists. MMEs affect the whole ecosystem, but are traditionally only studied in relation to specific species, disregarding ecological feedbacks. Here we use an end-to-end ecosystem model adapted to the Nordic and Barents seas to evaluate the species-specific and ecological impacts for 50 years following an MME. MMEs were modeled as 10, 50, or 90% reduced recruitment for cod, herring and haddock, individually or in combination. The MME scenarios were compared to a base case model run that includes the current fishing mortality. All species showed declines in population biomass following an MME, increasing in duration and severity with increasing mortality. Cod biomass rebounded to the base case level within 3–13 years post the MME independent of scenario, while neither haddock nor herring fully rebounded to base case levels within the considered time horizon. Haddock responded much more variably to the mortality scenarios than cod or herring, with some scenarios yielding much higher levels of biomass than the base case. Herring responded negatively to all scenarios, leading to lower herring biomass and a steeper decline of the species than seen in the base case due to persistent harvest pressure. Corresponding responses showed that the demersal guild biomass increased substantially, while the pelagic guild biomass declined. Few effects were observed on the other guilds, including the top predators. Ecosystem effects as measured by ecological indicators were greatest after 5 years, but persisted through the entire model run. Fishery indicators showed the same features, but the responses were stronger than for the ecosystem indicators. Taken together this indicates long-term, ecological response to MMEs that can be described as regime shifts, highlighting the importance of using ecosystem models when evaluating effects of MMEs

    Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models

    Get PDF
    Ecosystem-based management (EBM) of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modeling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the global advances in ecosystem modeling to explore common opportunities and challenges for ecosystem-based management, including changes in ocean acidification, spatial management, and fishing pressure across eight Atlantis (atlantis.cmar.csiro.au) end-to-end ecosystem models. These models represent marine ecosystems from the tropics to the arctic, varying in size, ecology, and management regimes, using a three-dimensional, spatially-explicit structure parametrized for each system. Results suggest stronger impacts from ocean acidification and marine protected areas than from altering fishing pressure, both in terms of guild-level (i.e., aggregations of similar species or groups) biomass and in terms of indicators of ecological and fishery structure. Effects of ocean acidification were typically negative (reducing biomass), while marine protected areas led to both “winners” and “losers” at the level of particular species (or functional groups). Changing fishing pressure (doubling or halving) had smaller effects on the species guilds or ecosystem indicators than either ocean acidification or marine protected areas. Compensatory effects within guilds led to weaker average effects at the guild level than the species or group level. The impacts and tradeoffs implied by these future scenarios are highly relevant as ocean governance shifts focus from single-sector objectives (e.g., sustainable levels of individual fished stocks) to taking into account competing industrial sectors\u27 objectives (e.g., simultaneous spatial management of energy, shipping, and fishing) while at the same time grappling with compounded impacts of global climate change (e.g., ocean acidification and warming)

    Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models

    No full text
    Ecosystem-based management (EBM) of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modeling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the global advances in ecosystem modeling to explore common opportunities and challenges for ecosystem-based management, including changes in ocean acidification, spatial management, and fishing pressure across eight Atlantis (atlantis.cmar.csiro.au) end-to-end ecosystem models. These models represent marine ecosystems from the tropics to the arctic, varying in size, ecology, and management regimes, using a three-dimensional, spatially-explicit structure parametrized for each system. Results suggest stronger impacts from ocean acidification and marine protected areas than from altering fishing pressure, both in terms of guild-level (i.e., aggregations of similar species or groups) biomass and in terms of indicators of ecological and fishery structure. Effects of ocean acidification were typically negative (reducing biomass), while marine protected areas led to both “winners” and “losers” at the level of particular species (or functional groups). Changing fishing pressure (doubling or halving) had smaller effects on the species guilds or ecosystem indicators than either ocean acidification or marine protected areas. Compensatory effects within guilds led to weaker average effects at the guild level than the species or group level. The impacts and tradeoffs implied by these future scenarios are highly relevant as ocean governance shifts focus from single-sector objectives (e.g., sustainable levels of individual fished stocks) to taking into account competing industrial sectors\u27 objectives (e.g., simultaneous spatial management of energy, shipping, and fishing) while at the same time grappling with compounded impacts of global climate change (e.g., ocean acidification and warming)

    Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models

    Get PDF
    Ecosystem-based management (EBM) of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modeling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the global advances in ecosystem modeling to explore common opportunities and challenges for ecosystem-based management, including changes in ocean acidification, spatial management, and fishing pressure across eight Atlantis (atlantis.cmar.csiro.au) end-to-end ecosystem models. These models represent marine ecosystems from the tropics to the arctic, varying in size, ecology, and management regimes, using a three-dimensional, spatially-explicit structure parametrized for each system. Results suggest stronger impacts from ocean acidification and marine protected areas than from altering fishing pressure, both in terms of guild-level (i.e., aggregations of similar species or groups) biomass and in terms of indicators of ecological and fishery structure. Effects of ocean acidification were typically negative (reducing biomass), while marine protected areas led to both “winners” and “losers” at the level of particular species (or functional groups). Changing fishing pressure (doubling or halving) had smaller effects on the species guilds or ecosystem indicators than either ocean acidification or marine protected areas. Compensatory effects within guilds led to weaker average effects at the guild level than the species or group level. The impacts and tradeoffs implied by these future scenarios are highly relevant as ocean governance shifts focus from single-sector objectives (e.g., sustainable levels of individual fished stocks) to taking into account competing industrial sectors\u27 objectives (e.g., simultaneous spatial management of energy, shipping, and fishing) while at the same time grappling with compounded impacts of global climate change (e.g., ocean acidification and warming)

    DataSheet1.PDF

    No full text
    <p>Ecosystem-based management (EBM) of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modeling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the global advances in ecosystem modeling to explore common opportunities and challenges for ecosystem-based management, including changes in ocean acidification, spatial management, and fishing pressure across eight Atlantis (atlantis.cmar.csiro.au) end-to-end ecosystem models. These models represent marine ecosystems from the tropics to the arctic, varying in size, ecology, and management regimes, using a three-dimensional, spatially-explicit structure parametrized for each system. Results suggest stronger impacts from ocean acidification and marine protected areas than from altering fishing pressure, both in terms of guild-level (i.e., aggregations of similar species or groups) biomass and in terms of indicators of ecological and fishery structure. Effects of ocean acidification were typically negative (reducing biomass), while marine protected areas led to both “winners” and “losers” at the level of particular species (or functional groups). Changing fishing pressure (doubling or halving) had smaller effects on the species guilds or ecosystem indicators than either ocean acidification or marine protected areas. Compensatory effects within guilds led to weaker average effects at the guild level than the species or group level. The impacts and tradeoffs implied by these future scenarios are highly relevant as ocean governance shifts focus from single-sector objectives (e.g., sustainable levels of individual fished stocks) to taking into account competing industrial sectors' objectives (e.g., simultaneous spatial management of energy, shipping, and fishing) while at the same time grappling with compounded impacts of global climate change (e.g., ocean acidification and warming).</p
    corecore