21 research outputs found

    Sourcing high tissue quality brains from deceased wild primates with known socio-ecology

    Get PDF
    1. The selection pressures that drove dramatic encephalisation processes through the mammal lineage remain elusive, as does knowledge of brain structure reorganisation through this process. In particular, considerable structural brain changes are present across the primate lineage, culminating in the complex human brain that allows for unique behaviours such as language and sophisticated tool use. To understand this evolution, a diverse sample set of humans' closest relatives with varying socio-ecologies is needed. However, current brain banks predominantly curate brains from primates that died in zoological gardens. We try to address this gap by establishing a field pipeline mitigating the challenges associated with brain extractions of wild primates in their natural habitat. 2. The success of our approach is demonstrated by our ability to acquire a novel brain sample of deceased primates with highly variable socio-ecological exposure and a particular focus on wild chimpanzees. Methods in acquiring brain tissue from wild settings are comprehensively explained, highlighting the feasibility of conducting brain extraction procedures under strict biosafety measures by trained veterinarians in field sites. 3. Brains are assessed at a fine-structural level via high-resolution MRI and state-of-the-art histology. Analyses confirm that excellent tissue quality of primate brains sourced in the field can be achieved with a comparable tissue quality of brains acquired from zoo-living primates. 4. Our field methods are noninvasive, here defined as not harming living animals, and may be applied to other mammal systems than primates. In sum, the field protocol and methodological pipeline validated here pose a major advance for assessing the influence of socio-ecology on medium to large mammal brains, at both macro- and microstructural levels as well as aiding with the functional annotation of brain regions and neuronal pathways via specific behaviour assessments

    Detailed mapping of the complex fiber structure and white matter pathways of the chimpanzee brain

    Get PDF
    Long-standing questions about human brain evolution may only be resolved through comparisons with close living evolutionary relatives, such as chimpanzees. This applies in particular to structural white matter (WM) connectivity, which continuously expanded throughout evolution. However, due to legal restrictions on chimpanzee research, neuroscience research currently relies largely on data with limited detail or on comparisons with evolutionarily distant monkeys. Here, we present a detailed magnetic resonance imaging resource to study structural WM connectivity in the chimpanzee. This open-access resource contains (1) WM reconstructions of a postmortem chimpanzee brain, using the highest-quality diffusion magnetic resonance imaging data yet acquired from great apes; (2) an optimized and validated method for high-quality fiber orientation reconstructions; and (3) major fiber tract segmentations for cross-species morphological comparisons. This dataset enabled us to identify phylogenetically relevant details of the chimpanzee connectome, and we anticipate that it will substantially contribute to understanding human brain evolution

    Brain structure and function: a multidisciplinary pipeline to study hominoid brain evolution

    Get PDF
    To decipher the evolution of the hominoid brain and its functions, it is essential to conduct comparative studies in primates, including our closest living relatives. However, strong ethical concerns preclude in vivo neuroimaging of great apes. We propose a responsible and multidisciplinary alternative approach that links behavior to brain anatomy in non-human primates from diverse ecological backgrounds. The brains of primates observed in the wild or in captivity are extracted and fixed shortly after natural death, and then studied using advanced MRI neuroimaging and histology to reveal macro- and microstructures. By linking detailed neuroanatomy with observed behavior within and across primate species, our approach provides new perspectives on brain evolution. Combined with endocranial brain imprints extracted from computed tomographic scans of the skulls these data provide a framework for decoding evolutionary changes in hominin fossils. This approach is poised to become a key resource for investigating the evolution and functional differentiation of hominoid brains

    Sourcing high tissue quality brains from deceased wild primates with known socio‐ecology

    Get PDF
    The selection pressures that drove dramatic encephalisation processes through the mammal lineage remain elusive, as does knowledge of brain structure reorganisation through this process. In particular, considerable structural brain changes are present across the primate lineage, culminating in the complex human brain that allows for unique behaviours such as language and sophisticated tool use. To understand this evolution, a diverse sample set of humans' closest relatives with varying socio-ecologies is needed. However, current brain banks predominantly curate brains from primates that died in zoological gardens. We try to address this gap by establishing a field pipeline mitigating the challenges associated with brain extractions of wild primates in their natural habitat. The success of our approach is demonstrated by our ability to acquire a novel brain sample of deceased primates with highly variable socio-ecological exposure and a particular focus on wild chimpanzees. Methods in acquiring brain tissue from wild settings are comprehensively explained, highlighting the feasibility of conducting brain extraction procedures under strict biosafety measures by trained veterinarians in field sites. Brains are assessed at a fine-structural level via high-resolution MRI and state-of-the-art histology. Analyses confirm that excellent tissue quality of primate brains sourced in the field can be achieved with a comparable tissue quality of brains acquired from zoo-living primates. Our field methods are noninvasive, here defined as not harming living animals, and may be applied to other mammal systems than primates. In sum, the field protocol and methodological pipeline validated here pose a major advance for assessing the influence of socio-ecology on medium to large mammal brains, at both macro- and microstructural levels as well as aiding with the functional annotation of brain regions and neuronal pathways via specific behaviour assessments

    Sourcing high tissue quality brains from deceased wild primates with known socio‐ecology

    Get PDF
    The selection pressures that drove dramatic encephalisation processes through the mammal lineage remain elusive, as does knowledge of brain structure reorganisation through this process. In particular, considerable structural brain changes are present across the primate lineage, culminating in the complex human brain that allows for unique behaviours such as language and sophisticated tool use. To understand this evolution, a diverse sample set of humans' closest relatives with varying socio-ecologies is needed. However, current brain banks predominantly curate brains from primates that died in zoological gardens. We try to address this gap by establishing a field pipeline mitigating the challenges associated with brain extractions of wild primates in their natural habitat. The success of our approach is demonstrated by our ability to acquire a novel brain sample of deceased primates with highly variable socio-ecological exposure and a particular focus on wild chimpanzees. Methods in acquiring brain tissue from wild settings are comprehensively explained, highlighting the feasibility of conducting brain extraction procedures under strict biosafety measures by trained veterinarians in field sites. Brains are assessed at a fine-structural level via high-resolution MRI and state-of-the-art histology. Analyses confirm that excellent tissue quality of primate brains sourced in the field can be achieved with a comparable tissue quality of brains acquired from zoo-living primates. Our field methods are noninvasive, here defined as not harming living animals, and may be applied to other mammal systems than primates. In sum, the field protocol and methodological pipeline validated here pose a major advance for assessing the influence of socio-ecology on medium to large mammal brains, at both macro- and microstructural levels as well as aiding with the functional annotation of brain regions and neuronal pathways via specific behaviour assessments.Output Status: Forthcoming/Available Online Additional authors: Richard McElreath, Alfred Anwander, Philipp Gunz, Markus Morawski, Angela D. Friederici, Nikolaus Weiskopf, Fabian H. Leendertz, Roman M. Wittig EBC Cosortium: Karoline Albig, Bala Amarasekaran, Sam Angedakin, Alfred Anwander, Daniel Aschoff, Caroline Asiimwe, Laurent Bailanda, Jacinta C. Beehner, Raphael Belais, Thore J. Bergman, Birgit Blazey, Andreas Bernhard, Christian Bock, PĂ©nĂ©lope Carlier, Julian Chantrey, Catherine Crockford, Tobias Deschner, Ariane DĂŒx1, Luke Edwards, Cornelius Eichner, GĂ©raldine Escoubas2, Malak Ettaj, Karina Flores, Richard Francke, Angela D. Friederici, CĂ©dric Girard-Buttoz, Jorge Gomez Fortun, Zoro Bertin GoneBi, Tobias GrĂ€ĂŸle, Eva Gruber-Dujardin, Philipp Gunz, Jess Hartel, Daniel B. M. Haun, Michael Henshall, Catherine Hobaiter, NoĂ©mie Hofman, Jenny E. Jaffe, Carsten JĂ€ger, Anna Jauch, Stomy Kahemere, Evgeniya Kirilina, Robert Klopfleisch, Tobias Knauf-Witzens, Kathrin S. Kopp, Guy Landry Mamboundou Kouima, Bastian Lange, Kevin Langergraber, Arne Lawrenz, Fabian H. Leendertz, Ilona Lipp, Matys Liptovszky, Tobias Loubser Theron, Christelle Patricia Lumbu, Patrice Makouloutou Nzassi, Kerstin MĂ€tz-Rensing, Richard McElreath, Matthew McLennan, Zoltan Mezö, Sophie Moittie, Torsten MĂžller, Markus Morawski, David Morgan, Timothy Mugabe, Martin Muller, Matthias MĂŒller, Inoussa Njumboket, Karin Olofsson-Sannö, Alain Ondzie, Emily Otali, Michael Paquette, Simone Pika, Kerrin Pine, Andrea Pizarro, Kamilla PlĂ©h, Jessica Rendel, Sandra Reichler-Danielowski, Martha M. Robbins, Alejandra Romero Forero, Konstantin Ruske, Liran Samuni, Crickette Sanz, AndrĂ© SchĂŒle, Ingo Schwabe, Katarina Schwalm, Sheri Speede, Lara Southern, Jonas Steiner, Marc Stidworthy, Martin Surbeck, Claudia Szentiks, Tanguy Tanga, Reiner Ulrich, Steve Unwin, Erica van de Waal, Sue Walker, Nikolaus Weiskopf, Gudrun Wibbelt, Roman M. Wittig, Kim Wood, Klaus ZuberbĂŒhle

    Recommendations and guidelines from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 1 -- In vivo small-animal imaging

    Full text link
    The value of in vivo preclinical diffusion MRI (dMRI) is substantial. Small-animal dMRI has been used for methodological development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. Many of the influential works in this field were first performed in small animals or ex vivo samples. The steps from animal setup and monitoring, to acquisition, analysis, and interpretation are complex, with many decisions that may ultimately affect what questions can be answered using the data. This work aims to serve as a reference, presenting selected recommendations and guidelines from the diffusion community, on best practices for preclinical dMRI of in vivo animals. In each section, we also highlight areas for which no guidelines exist (and why), and where future work should focus. We first describe the value that small animal imaging adds to the field of dMRI, followed by general considerations and foundational knowledge that must be considered when designing experiments. We briefly describe differences in animal species and disease models and discuss how they are appropriate for different studies. We then give guidelines for in vivo acquisition protocols, including decisions on hardware, animal preparation, imaging sequences and data processing, including pre-processing, model-fitting, and tractography. Finally, we provide an online resource which lists publicly available preclinical dMRI datasets and software packages, to promote responsible and reproducible research. An overarching goal herein is to enhance the rigor and reproducibility of small animal dMRI acquisitions and analyses, and thereby advance biomedical knowledge.Comment: 69 pages, 6 figures, 1 tabl

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    Legislative Documents

    Get PDF
    Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents

    Data Repository: Mapping the Human Lateral Geniculate Nucleus and its Cytoarchitectonic Subdivisions Using Quantitative MRI

    No full text
    Data repository of 'Mapping the human lateral geniculate nucleus and its cytoarchitectonic subdivisions using quantitative MRI

    Template 0.4mm

    No full text
    corecore