2,808 research outputs found

    Probing the Production of Actinides under Different r-process Conditions

    Get PDF
    Several extremely metal-poor stars are known to have an enhanced thorium abundance. These actinide-boost stars have likely inherited material from an r-process that operated under different conditions than the r-process that is reflected in most other metal-poor stars with no actinide enhancement. In this article, we explore the sensitivity of actinide production in r-process calculations to the hydrodynamical conditions as well as the nuclear physics. We find that the initial electron fraction Y e is the most important factor determining the actinide yields and that the abundance ratios between long-lived actinides and lanthanides like europium can vary for different conditions in our calculations. In our setup, conditions with high entropies systematically lead to lower actinide abundances relative to other r-process elements. Furthermore, actinide-enhanced ejecta can also be distinguished from the "regular" composition in other ways, most notably in the second r-process peak abundances.Peer reviewe

    Asymptotic channels and gauge transformations of the time-dependent Dirac equation for extremely relativistic heavy-ion collisions

    Get PDF
    We discuss the two-center, time-dependent Dirac equation describing the dynamics of an electron during a peripheral, relativistic heavy-ion collision at extreme energies. We derive a factored form, which is exact in the high-energy limit, for the asymptotic channel solutions of the Dirac equation, and elucidate their close connection with gauge transformations which transform the dynamics into a representation in which the interaction between the electron and a distant ion is of short range. We describe the implications of this relationship for solving the time-dependent Dirac equation for extremely relativistic collisions.Comment: 12 pages, RevTeX, 2 figures, submitted to PR

    Theory of nuclear excitation by electron capture for heavy ions

    Full text link
    We investigate the resonant process of nuclear excitation by electron capture, in which a continuum electron is captured into a bound state of an ion with the simultaneous excitation of the nucleus. In order to derive the cross section a Feshbach projection operator formalism is introduced. Nuclear states and transitions are described by a nuclear collective model and making use of experimental data. Transition rates and total cross sections for NEEC followed by the radiative decay of the excited nucleus are calculated for various heavy ion collision systems

    Sources and distribution of trace species in Alpine precipitation inferred from two 60-year ice core paleorecords

    Get PDF
    International audienceThe Alps represent the largest barrier to meridional air flow in Europe, strongly influencing the weather and hence the distribution of atmospheric trace components. Here for the first time, chemical records from two ice cores retrieved from glaciers located in the northern and southern Swiss Alps were compared in conjunction with an analysis of "weather type", in order to assess geographical and seasonal trends in the deposition of trace species and to identify source regions and transport patterns. Using a correlation analysis, investigated trace species (NH4+, NO3?, SO42?, Ca2+, Mg2+, Na+, K+, and Cl? were grouped into classes of different origin (anthropogenic, sea salt, or Saharan dust). Over the last 60 years, precipitation chemistry at both sites was dominated by NH4+, NO4?, and SO42?, all of anthropogenic origin and deposited mainly in summer by way of convective precipitation. The similarity of the SO42? profiles with historical records of SO4 emissions from France and Italy indicated these two countries as key source areas for the anthropogenic species. In contrast, sea salt and Saharan dust showed major differences in transport pattern and deposition across the Alps. Currently, the sea-salt constituents Na+, K+, and Cl? are transported to the northern site during advective westerly-wind situations, independent of Saharan dust events. At the southern site, sea salt and Saharan dust are deposited simultaneously, indicating a coupled transport active mainly in summer during south-westerly wind situations

    PII: S0165-2478(96)02670-3

    Get PDF
    Abstract CD97 is a member of a new subgroup of seven-span transmembrane (7-TM) molecules which belong to the secretin receptor superfamily. Different from other members of the secretin receptor family, these recently characterized molecules have extended extracellular regions comprising several EGF domains near the NH 2 terminus. We recently demonstrated that the extracellular part of CD97 is involved in intercellular adhesion since it specifically binds to CD55 (decay accelerating factor), a regulatory protein of the complement cascade. To our knowledge this is the first demonstration of a cellular ligand for a 7-TM molecule

    An analysis of penalty kicks in elite football post 1997

    Get PDF
    The penalty kick in football is a seemingly simplistic play; however, it has increased in complexity since 1997 when the rules changed allowing goalkeepers to move laterally along their goal line before the ball was kicked. Prior to 1997 goalkeepers were required to remain still until the ball was struck. The objective of this study was to determine the importance of the penalty kick in the modern game of football. A retrospective study of the 2002, 2006 and 2010 World Cup and the 2000, 2004 and 2008 European Championship tournaments was carried out, assessing the importance of the penalty kick in match play and shootouts and the effect of the time of the game on the shooter's success rate. This study demonstrated the conversion rate of penalties was 73% in shootouts and 68% in match play. Significantly more penalties were awarded late in the game: twice as many penalties in the second half than the first and close to four times as many in the fourth quarter vs. the first. Teams awarded penalty kicks during match play won 52%, drew 30% and lost 18% of the time; chances of winning increased to 61% if the penalty was scored, but decreased to 29% if missed. Teams participating in either the World Cup or European Championship final match had roughly a 50% chance of being involved in a penalty shootout during the tournament. Penalty shots and their outcome significantly impact match results in post 1997 football

    Gas chromatography of indium in macroscopic and carrier-free amounts using quartz and gold as stationary phases

    Get PDF
    The chemical investigation of E113 is likely to become soon feasible. The determination of chemical properties of carrier-free amounts of the lighter homologues of element 113, especially indium and thallium, allows designing experimental set-ups and selecting experimental conditions suitable for performing these studies. Here, we present investigations of the interaction of indium species with quartz and gold surfaces. Deposition temperatures as well as enthalpies of adsorption were determined for indium Tdep=739±20°C (−ΔHads(In)=227±10kJ mol−1) and for indium hydroxide Tdep=250±20°C (−ΔHads(InOH)= 124±10kJ mol−1) respectively, on quartz. In case of adsorption of indium on a gold surface only a lower limit of the deposition temperature was established Tdep>980°C (−ΔHads(In)≥315±10kJ mol−1). Investigations of macroscopic amounts of indium in thermosublimation experiments at similar experimental conditions were instrumental to establish a tentative speciation of the observed indium specie

    Thermal lensing-induced bifocusing of spatial solitons in Kerr-type optical media

    Full text link
    Thermo-optical effects cause a bifocusing of incoming beams in optical media, due to the birefringence created by a thermal lens that can resolve the incoming beams into two-component signals of different polarizations. We propose a non-perturbative theoretical description of the process of formation of double-pulse solitons in Kerr optical media with a thermally-induced birefringence, based on solving simultaneously the heat equation and the propagation equation for a beam in a one-dimensional medium with uniform heat flux load. By means of a non-isospectral Inverse Scattering Transform assuming an initial solution with a pulse shape, a one-soliton solution to the wave equation is obtained that represents a double-pulse beam which characteristic properties depend strongly on the profile of heat spatial distribution.Comment: 5 pages, 2 figure
    • …
    corecore