60 research outputs found

    Towards a Polynomial Kernel for Directed Feedback Vertex Set

    Get PDF
    In the Directed Feedback Vertex Set (DFVS) problem, the input is a directed graph D and an integer k. The objective is to determine whether there exists a set of at most k vertices intersecting every directed cycle of D. DFVS was shown to be fixed-parameter tractable when parameterized by solution size by Chen, Liu, Lu, O\u27Sullivan and Razgon [JACM 2008]; since then, the existence of a polynomial kernel for this problem has become one of the largest open problems in the area of parameterized algorithmics. In this paper, we study DFVS parameterized by the feedback vertex set number of the underlying undirected graph. We provide two main contributions: a polynomial kernel for this problem on general instances, and a linear kernel for the case where the input digraph is embeddable on a surface of bounded genus

    Evolution of Diverse, Manufacturable Robot Body Plans

    Get PDF
    Advances in rapid prototyping have opened up new avenues of research within Evolutionary Robotics in which not only controllers but also the body plans (morphologies) of robots can evolve in real-time and real-space. However, this also introduces new challenges, in that robot models that can be instantiated from an encoding in simulation might not be manufacturable in practice (due to constraints associated with the 3D printing and/or automated assembly processes). We introduce a representation for evolving (wheeled) robots with a printed plastic skeleton, and evaluate three variants of a novelty-search algorithm in terms of their ability to produce populations of manufacturable but diverse robots. While the set of manufacturable robots discovered represent only a small fraction of the overall search space of all robots, all methods are shown to be capable of generating a diverse population of manufacturable robots that we conjecture is large enough to seed an evolving robotic ecosystem

    Hardware Design for Autonomous Robot Evolution

    Get PDF
    The long term goal of the Autonomous Robot Evolution (ARE) project is to create populations of physical robots, in which both the controllers and body plans are evolved. The transition for evolutionary designs from purely simulation environments into the real world creates the possibility for new types of system able to adapt to unknown and changing environments. In this paper, a system for creating robots is introduced in order to allow for their body plans to be designed algorithmically and physically instantiated using the previously introduced Robot Fabricator. This system consists of two types of components. Firstly, \textit{skeleton} parts are created bespoke for each design by 3D printing, allowing the overall shape of the robot to include almost infinite variety. To allow for the shortcomings of 3D printing, the second type of component are \textit{organs} which contain components such as motors and sensors, and can be attached to the skeleton to provide particular functions. Specific organ designs are presented, with discussion of the design challenges for evolutionary robotics in hardware. The Robot Fabricator is extended to allow for robots with joints, and some example body plans shown to demonstrate the diversity possible using this system of robot generation

    Laminate polyethylene window development for large aperture millimeter receivers

    Full text link
    New experiments that target the B-mode polarization signals in the Cosmic Microwave Background require more sensitivity, more detectors, and thus larger-aperture millimeter-wavelength telescopes, than previous experiments. These larger apertures require ever larger vacuum windows to house cryogenic optics. Scaling up conventional vacuum windows, such as those made of High Density Polyethylene (HDPE), require a corresponding increase in the thickness of the window material to handle the extra force from the atmospheric pressure. Thicker windows cause more transmission loss at ambient temperatures, increasing optical loading and decreasing sensitivity. We have developed the use of woven High Modulus Polyethylene (HMPE), a material 100 times stronger than HDPE, to manufacture stronger, thinner windows using a pressurized hot lamination process. We discuss the development of a specialty autoclave for generating thin laminate vacuum windows and the optical and mechanical characterization of full scale science grade windows, with the goal of developing a new window suitable for BICEP Array cryostats and for future CMB applications

    Practical Hardware for Evolvable Robots

    Get PDF
    The evolutionary robotics field offers the possibility of autonomously generating robots that are adapted to desired tasks by iteratively optimising across successive generations of robots with varying configurations until a high-performing candidate is found. The prohibitive time and cost of actually building this many robots means that most evolutionary robotics work is conducted in simulation, but to apply evolved robots to real-world problems, they must be implemented in hardware, which brings new challenges. This paper explores in detail the design of an example system for realising diverse evolved robot bodies, and specifically how this interacts with the evolutionary process. We discover that every aspect of the hardware implementation introduces constraints that change the evolutionary space, and exploring this interplay between hardware constraints and evolution is the key contribution of this paper. In simulation, any robot that can be defined by a suitable genetic representation can be implemented and evaluated, but in hardware, real-world limitations like manufacturing/assembly constraints and electrical power delivery mean that many of these robots cannot be built, or will malfunction in operation. This presents the novel challenge of how to constrain an evolutionary process within the space of evolvable phenotypes to only those regions that are practically feasible: the viable phenotype space. Methods of phenotype filtering and repair were introduced to address this, and found to degrade the diversity of the robot population and impede traversal of the exploration space. Furthermore, the degrees of freedom permitted by the hardware constraints were found to be poorly matched to the types of morphological variation that would be the most useful in the target environment. Consequently, the ability of the evolutionary process to generate robots with effective adaptations was greatly reduced. The conclusions from this are twofold. 1) Designing a hardware platform for evolving robots requires different thinking, in which all design decisions should be made with reference to their impact on the viable phenotype space. 2) It is insufficient to just evolve robots in simulation without detailed consideration of how they will be implemented in hardware, because the hardware constraints have a profound impact on the evolutionary space

    Bootstrapping artificial evolution to design robots for autonomous fabrication

    Get PDF
    A long-term vision of evolutionary robotics is a technology enabling the evolution of entire autonomous robotic ecosystems that live and work for long periods in challenging and dynamic environments without the need for direct human oversight. Evolutionary Robotics has been widely used due to its capability of creating unique robot designs in simulation. Recent work has shown that it is possible to autonomously construct evolved designs in the physical domain, however this brings new challenges: the autonomous manufacture and assembly process introduces new constraints that are not apparent in simulation. To tackle this, we introduce a new method for producing a repertoire of diverse but manufacturable robots. This repertoire is used to seed an evolutionary loop that subsequently evolves robot designs and controllers capable of solving a maze-navigation task. We show that compared to random initialisation, seeding with a diverse and manufacturable population speeds up convergence and on some tasks, increases performance, while maintaining manufacturability

    Practical hardware for evolvable robots

    Get PDF
    The evolutionary robotics field offers the possibility of autonomously generating robots that are adapted to desired tasks by iteratively optimising across successive generations of robots with varying configurations until a high-performing candidate is found. The prohibitive time and cost of actually building this many robots means that most evolutionary robotics work is conducted in simulation, but to apply evolved robots to real-world problems, they must be implemented in hardware, which brings new challenges. This paper explores in detail the design of an example system for realising diverse evolved robot bodies, and specifically how this interacts with the evolutionary process. We discover that every aspect of the hardware implementation introduces constraints that change the evolutionary space, and exploring this interplay between hardware constraints and evolution is the key contribution of this paper. In simulation, any robot that can be defined by a suitable genetic representation can be implemented and evaluated, but in hardware, real-world limitations like manufacturing/assembly constraints and electrical power delivery mean that many of these robots cannot be built, or will malfunction in operation. This presents the novel challenge of how to constrain an evolutionary process within the space of evolvable phenotypes to only those regions that are practically feasible: the viable phenotype space. Methods of phenotype filtering and repair were introduced to address this, and found to degrade the diversity of the robot population and impede traversal of the exploration space. Furthermore, the degrees of freedom permitted by the hardware constraints were found to be poorly matched to the types of morphological variation that would be the most useful in the target environment. Consequently, the ability of the evolutionary process to generate robots with effective adaptations was greatly reduced. The conclusions from this are twofold. 1) Designing a hardware platform for evolving robots requires different thinking, in which all design decisions should be made with reference to their impact on the viable phenotype space. 2) It is insufficient to just evolve robots in simulation without detailed consideration of how they will be implemented in hardware, because the hardware constraints have a profound impact on the evolutionary space

    Morpho-evolution with learning using a controller archive as an inheritance mechanism

    Get PDF
    Most work in evolutionary robotics centres on evolving a controller for a fixed body-plan. However, previous studiessuggest that simultaneously evolving both controller and body-plan could open up many interesting possibilities. However, thejoint optimisation of body-plan and control via evolutionaryprocesses can be challenging in rich morphological spaces. Thisis because offspring can have body-plans that are very differentfrom either of their parents, leading to a potential mismatchbetween the structure of an inherited neural controller and thenew body. To address this, we propose a framework that combinesan evolutionary algorithm to generate body-plans and a learning algorithm to optimise the parameters of a neural controller. The topology of this controller is created once the body-plan of each offspring has been generated. The key novelty of the approach is to add an external archive for storing learned controllers that map to explicit ‘types’ of robots (where this is defined with respect to the features of the body-plan). By initiating learning froma controller with an appropriate structure inherited from thearchive, rather than from a randomly initialised one, we show that both the speed and magnitude of learning increases over time when compared to an approach that starts from scratch, using two tasks and three environments. The framework also provides new insights into the complex interactions between evolution and learnin

    Hardware Design for Autonomous Robot Evolution

    Get PDF
    The long term goal of the Autonomous Robot Evolution (ARE) project is to create populations of physical robots, in which both the controllers and body plans are evolved. The transition of evolutionary designs from purely simulation environments into the real world creates the possibility for new types of system able to adapt to unknown and changing environments. In this paper, a system for creating robots is introduced in order to allow for their body plans to be designed algorithmically and physically instantiated using the previously introduced Robot Fabricator. This system consists of two types of components. Firstly, skeleton parts are created bespoke for each design by 3D printing, allowing the overall shape of the robot to include almost infinite variety. To allow for the shortcomings of 3D printing, the second type of component are organs which contain components such as motors and sensors, and can be attached to the skeleton to provide particular functions. Specific organ designs are presented, with discussion of the design challenges for evolutionary robotics in hardware. The Robot Fabricator is extended to allow for robots with joints, and some example body plans shown to demonstrate the diversity possible using this system of robot generation

    Morpho-evolution with learning using a controller archive as an inheritance mechanism

    Get PDF
    Most work in evolutionary robotics centres on evolving a controller for a fixed body-plan. However, previous studiessuggest that simultaneously evolving both controller and body-plan could open up many interesting possibilities. However, thejoint optimisation of body-plan and control via evolutionaryprocesses can be challenging in rich morphological spaces. Thisis because offspring can have body-plans that are very differentfrom either of their parents, leading to a potential mismatchbetween the structure of an inherited neural controller and thenew body. To address this, we propose a framework that combinesan evolutionary algorithm to generate body-plans and a learning algorithm to optimise the parameters of a neural controller. The topology of this controller is created once the body-plan of each offspring has been generated. The key novelty of the approach is to add an external archive for storing learned controllers that map to explicit ‘types’ of robots (where this is defined with respect to the features of the body-plan). By initiating learning froma controller with an appropriate structure inherited from thearchive, rather than from a randomly initialised one, we show that both the speed and magnitude of learning increases over time when compared to an approach that starts from scratch, using two tasks and three environments. The framework also provides new insights into the complex interactions between evolution and learnin
    • 

    corecore