65 research outputs found

    Dry Electrode Manufacturing in a Calender: The Role of Powder Premixing for Electrode Quality and Electrochemical Performance

    Get PDF
    The dry manufacturing of battery electrodes has the potential to significantly reduce costs and the environmental impact of battery production but deteriorates the electrode quality due to drawbacks in the processability of the materials. By varying the mixing intensity of the powder mixtures, this work investigates the impact of blend homogeneity on the flow properties and the processability of the dry mixtures. Furthermore, the electrochemical performance of dry laminated electrodes made of LiNi0.6Mn0.2Co0.2O2 is investigated with respect to their initial mixture homogeneities and compared to slurry-based electrodes. An improvement of the powder flowability is observed for mixtures with a homogeneously distributed PVDF binder, which acts as a temporary lubricant in dry electrode manufacturing due to its ability to shear, resulting also in filament formation. Capacity and rate performance of electrodes made of homogeneous mixtures are the highest with 169 mAh/g at C/20 and 70 mAh/g at 3C compared to 169 and 49 mAh/g for the slurry-based electrodes, respectively. Cyclic voltammetry indicates lower overpotentials for incompletely homogenized electrodes due to the existence of carbon black aggregates that establish better long-range conductivity. Overall, electrodes from highly homogenized powders show the best electrochemical performance in terms of C-rate capability due to their favorable electrode thickness and porosity resulting from better processability in combination with a sufficiently distributed carbon binder domain

    Stability of concrete containing blast-furnace slag following exposure to cyclic elevated temperature

    Get PDF
    Concrete is widely used in constructions such as industrial floors or airducts in steel- and casting industry where it is often exposed to long-term or cyclic elevated temperatures. For these applications, thermal stability of concrete is of vital importance. The strength reduction dueto elevated temperatures depends on the temperature level and concrete composition. In this study, the effects of blast-furnace slag cement (CEM III/A) and basaltic aggregates were investigated at temperatures 250◦C to 700 ◦C in comparison to conventional Portland cement (CEM I) containing quarzitic aggregates. The concretes were cyclically exposed to high temperatures. Special attention was paid to mass loss, residual compressive and residual flexural strength depending on type of cement and aggregate as well as the number of thermal cycles. Mass loss and strength loss increased with increasing maximum temperature level, as expected. It was generally observed that concretes containing CEM III/A displayed significantly higher residual mechanical properties for almost all temperature levels. Concretes containing a combination of CEM III/Awith basaltic aggregates showed significantly higher stability at elevated temperatures compared to other concrete mixtures. It is further shown that apart from the maximum temperature the number of thermal cycles is important for the residual mechanical properties

    Optimizing the acid resistance of concrete with granulated blast-furnace slag

    Get PDF
    Concrete structures exposed to high levels of chemical attacks are assigned to exposure class XA3, which recommends separate concrete protection or a special expert solution to ensure durability. Due to the partial substitution of Portland cement by blast-furnace slag, an increased resistance to acid attacks could be achieved within the framework of a research project. The technical and ecological advantages of cements containing granulated blast-furnace slag were exploited through chemical, granulometric and concrete technological optimizations. Despite extensive parameters, a statistical test design (DoE) was able to limit the experimental effort, thus defining principles for the conception of binder systems with increased chemical resistance.Mortar prisms indicated that the use of (ultrafine) blast-furnace slags (up to 13,000 cm2/g according to Blaine) with a broad particle size distribution can have a positive effect both on the capillary/gel pore ratio and on the calcium hydroxide content in the cement stone. Furthermore, the chemical composition of the blast-furnace slag as well as the water-binder ratio are decisive influencing factors for the acid-resistance, which was confirmed in accelerated acid resistance tests on concretes (pH-stat method). After 13 weeks of storing concrete specimens in sulfuric acid (H2SO4, pH 3.5), reduced damage depths and lower weight losses were observed compared to conventional binder compositions. The results serve as a basis for the development of highly acid-resistant concretes using blast-furnace slag-containing binder systems. Currently, the acid resistance of those concretes is being investigated in a long-term study by outsourcing representative test specimens into the Emscher sewer

    A new performance test to evaluate the sulfate resistance of concrete by tensile strength measurements

    Get PDF
    Concrete structures without sufficient durability can be damaged by sulfates in groundwater and from surrounding rock layers. To evaluate the performance of a concrete mixture, precise and performance-oriented test methods are a must. Therefore, a new a performance oriented concrete test procedure based on tensile strength measurements was developed considering experiences reported in international literature and recommendations of state-of-the-art reports. A vast parameter study with approx. 3850 tensile tests on ASTM briquets, 1900 flexural tensile tests on standard prisms and 2100 expansion tests on mortar flat prisms of different ages and with different storage conditions was statistically assessed. Based on the results a performance-oriented test method could be defined which considers not only the chemical, but also the physical resistance of a concrete against sulfate attack. The method was verified by 23 concretes with different cements or cement fly ash combinations and additional field tests. It could clearly be demonstrated that the results represent the performance of a practical concrete in case of sulfate attack. Furthermore, it leads much faster to an evaluation of the sulfate resistance compared to the most other practical oriented methods

    Electrochemical investigation of fluorine-containing Li-salts as slurry cathode additives for tunable rheology in super high solid content NMP slurries

    Get PDF
    Slurries with high solid contents are attractive because they can minimize usage and recycling of toxic and expensive organic solvents, but have been, so far, very challenging to realize due to their high viscosities, strong slurry gelation and poor coating results. Herein, we demonstrate the application of well-known Li electrolyte salts, namely LiTFA, LiTFSI or LiODFB, as slurry additives, which allow the achievement of an outstanding high solid content of 75.5 wt% for a NMC622-NMP slurry. These kinds of additives are chosen in order to neutralize and chemically complex the NMC622 basic surface and because of their well-known interaction within a battery system when used as electrolyte salts or additives. The investigation shows how high solid content induced slurry gelation can be tuned and controlled depending on the type of the additive and on its affinity towards the NMC622 surface. LiTFA shows the best slurry gelation controlling capabilities and LiTFSI has enhanced long-term capacity retention among the additives, rivalling the best performing reference electrode. EIS performed on fatigued cathodes after 1000 cycles shows how the contact impedance between the electrode composite and the Al current collector rises when Li-salts are used in comparison to the reference. Post-mortem SEM images show cathodic delamination for the additive-containing electrodes. Incremental capacity curves and post-mortem EDX investigations suggest Li plating on graphite anodes as a supplementary cell degradation mechanism when additives are employed

    Single-molecule multiparameter fluorescence spectroscopy reveals directional MutS binding to mismatched bases in DNA

    Get PDF
    Mismatch repair (MMR) corrects replication errors such as mismatched bases and loops in DNA. The evolutionarily conserved dimeric MMR protein MutS recognizes mismatches by stacking a phenylalanine of one subunit against one base of the mismatched pair. In all crystal structures of G:T mismatch-bound MutS, phenylalanine is stacked against thymine. To explore whether these structures reflect directional mismatch recognition by MutS, we monitored the orientation of Escherichia coli MutS binding to mismatches by FRET and anisotropy with steady state, pre-steady state and single-molecule multiparameter fluorescence measurements in a solution. The results confirm that specifically bound MutS bends DNA at the mismatch. We found additional MutS–mismatch complexes with distinct conformations that may have functional relevance in MMR. The analysis of individual binding events reveal significant bias in MutS orientation on asymmetric mismatches (G:T versus T:G, A:C versus C:A), but not on symmetric mismatches (G:G). When MutS is blocked from binding a mismatch in the preferred orientation by positioning asymmetric mismatches near the ends of linear DNA substrates, its ability to authorize subsequent steps of MMR, such as MutH endonuclease activation, is almost abolished. These findings shed light on prerequisites for MutS interactions with other MMR proteins for repairing the appropriate DNA strand

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF
    corecore