209 research outputs found

    Lattice QCD at non-vanishing density: phase diagram, equation of state

    Full text link
    We propose a method to study lattice QCD at non-vanishing temperature (T) and chemical potential (\mu). We use n_f=2+1 dynamical staggered quarks with semi-realistic masses on L_t=4 lattices. The critical endpoint (E) of QCD on the Re(\mu)-T plane is located. We calculate the pressure (p), the energy density (\epsilon) and the baryon density (n_B) of QCD at non-vanishing T and \mu.Comment: Contributed to Workshop on Strong and Electroweak Matter (SEWM 2002), Heidelberg, Germany, 2-5 Oct 200

    The QCD equation of state at finite T/\mu on the lattice

    Full text link
    We present N_t=4 lattice results for the equation of state of 2+1 flavour staggered, dynamical QCD at finite temperature and chemical potential. We use the overlap improving multi-parameter reweighting technique to extend the equation of state for non-vanishing chemical potentials. The results are obtained along the line of constant physics. Our physical parameters extend in temperature and baryon chemical potential upto \approx 500-600 MeV.Comment: 13 pages 9 figures, talk given at Finite Density QCD at Nara, Nara, Japan, 10-12 July 200

    The QCD equation of state at finite T and mu

    Get PDF
    We calculate the pressure (p), the energy density (epsilon) and the baryon density (n(B)) of QCD at finite temperatures (T) and chemical potentials (mu). The recently proposed overlap improving multi-parameter reweighting technique is used to determine observables at nonvanishing chemical potentials. Our results are obtained by studying n(f) =2+1 dynamical staggered quarks with semi-realistic masses on N-t = 4 lattices

    Absorption and wavepackets in optically excited semiconductor superlattices driven by dc-ac fields

    Full text link
    Within the one-dimensional tight-binding minibands and on-site Coloumbic interaction approximation, the absorption spectrum and coherent wavepacket time evolution in an optically excited semiconductor superlattice driven by dc-ac electric fields are investigated using the semiconductor Bloch equations. The dominating roles of the ratios of dc-Stark to external ac frequency, as well as ac-Stark to external ac frequency, is emphasized. If the former is an integer N{\cal N}, then also N{\cal N} harmonics are present within one Stark frequency, while the fractional case leads to the formation of excitonic fractional ladders. The later ratio determines the size and profile of the wavepacket. In the absence of excitonic interaction it controls the maximum size wavepackets reach within one cycle, while the interaction produces a strong anisotropy and tends to palliate the dynamic wavepacket localization.Comment: 14 pages, 7 postscript figure

    Nanoscale Photoluminescence Manipulation in Monolithic Porous Silicon Oxide Microcavity Coated with Rhodamine-Labeled Polyelectrolyte via Electrostatic Nanoassembling

    Get PDF
    Porous silicon (PSi) is a promising material for future integrated nanophotonics when coupled with guest emitters, still facing challenges in terms of homogenous distribution and nanometric thickness of the emitter coating within the silicon nanostructure. Herein, it is shown that the nanopore surface of a porous silicon oxide (PSiO2) microcavity (MC) can be conformally coated with a uniform nm-thick layer of a cationic light-emitting polyelectrolyte, e.g., poly(allylamine hydrochloride) labeled with Rhodamine B (PAH-RhoB), leveraging the self-tuned electrostatic interaction of the positively-charged PAH-RhoB polymer and negatively-charged PSiO2 surface. It is found that the emission of PAH-RhoB in the PSiO2 MC is enhanced (≈2.5×) and narrowed (≈30×) at the resonant wavelength, compared with that of PAH-RhoB in a non-resonant PSiO2 reference structure. The time-resolved photoluminescence analysis highlights a shortening (≈20%) of the PAH-RhoB emission lifetime in the PSiO2 MC at the resonance versus off-resonance wavelengths, and with respect to the reference structure, thereby proving a significant variation of the radiative decay rate. Remarkably, an experimental Purcell factor Fp = 2.82 is achieved. This is further confirmed by the enhancement of the photoluminescence quantum yield of the PAH-RhoB in the PSiO2 MC with respect to the reference structure. Application of the electrostatic nanoassembling approach to other emitting dyes, nanomaterials, and nanophotonic systems is envisaged

    Dispersion of the dielectric function of a charge-transfer insulator

    Full text link
    We study the problem of dielectric response in the strong coupling regime of a charge transfer insulator. The frequency and wave number dependence of the dielectric function ϵ(q,ω)\epsilon ({\bf q},\omega) and its inverse ϵ−1(q,ω)\epsilon ^{-1}({\bf q},\omega) is the main object of consideration. We show that the problem, in general, cannot be reduced to a calculation within the Hubbard model, which takes into account only a restricted number of electronic states near the Fermi energy. The contribution of the rest of the system to the longitudinal response (i.e. to ϵ−1(q,ω)\epsilon ^{-1}({\bf q},\omega)) is essential for the whole frequency range. With the use of the spectral representation of the two-particle Green's function we show that the problem may be divided into two parts: into the contributions of the weakly correlated and the Hubbard subsystems. For the latter we propose an approach that starts from the correlated paramagnetic ground state with strong antiferromagnetic fluctuations. We obtain a set of coupled equations of motion for the two-particle Green's function that may be solved by means of the projection technique. The solution is expressed by a two particle basis that includes the excitonic states with electron and hole separated at various distances. We apply our method to the multiband Hubbard (Emery) model that describes layered cuprates. We show that strongly dispersive branches exist in the excitonic spectrum of the 'minimal' Emery model (1/Ud=Up=tpp=01/U_d=U_p=t_{pp}=0) and consider the dependence of the spectrum on finite oxygen hopping tppt_{pp} and on-site repulsion UpU_p. The relationship of our calculations to electron energy loss spectroscopy is discussed.Comment: 22 pages, 5 figure

    The QCD phase diagram at nonzero quark density

    Get PDF
    We determine the phase diagram of QCD on the \mu-T plane for small to moderate chemical potentials. Two transition lines are defined with two quantities, the chiral condensate and the strange quark number susceptibility. The calculations are carried out on N_t =6,8 and 10 lattices generated with a Symanzik improved gauge and stout-link improved 2+1 flavor staggered fermion action using physical quark masses. After carrying out the continuum extrapolation we find that both quantities result in a similar curvature of the transition line. Furthermore, our results indicate that in leading order the width of the transition region remains essentially the same as the chemical potential is increased.Comment: 12 pages, 6 figure
    • …
    corecore