
ar
X

iv
:h

ep
-l

at
/0

20
91

14
v1

  1
2 

Se
p 

20
02

1

ITP-Budapest 587, DESY 02-140

The QCD equation of state at finite T and µ

F. Csikora, G.I. Egria, Z. Fodora, S.D. Katzb∗, K.K. Szabó and A.I. Tótha
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We calculate the pressure (p), the energy density (ǫ) and the baryon density (nB) of QCD at finite temperatures
(T) and chemical potentials (µ). The recently proposed overlap improving multi-parameter reweighting technique
is used to determine observables at nonvanishing chemical potentials. Our results are obtained by studying
nf=2+1 dynamical staggered quarks with semi-realistic masses on Nt = 4 lattices.

weight lines
best 

quark−gluon
plasma

hadronic phase transition line

β

µ
Figure 1. The best weight lines on the µ–β plane.
In the middle we indicate the transition line. Its
first dotted part is the crossover region. The blob
represents the critical endpoint, after which the
transition is of first order. The integration paths
used to calculate p are shown by the arrows along
the β axis and the best weight lines.

QCD at nonzero density is easily formulated on
the lattice by multiplying the forward/backward
links by exp(±µ). However, standard importance
sampling based Monte-Carlo techniques can not
be used at µ 6=0. Up to now, no technique was
suggested capable of giving the equation of state
(EOS) at µ 6=0, which is essential to describe the
quark gluon plasma (QGP) formation at heavy
ion collider experiments. Results are only avail-
able for µ=0 (e.g. [1,2,3]) at T 6=0.
The overlap improving multi-parameter

reweighting [4] opened the possibility to study
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Figure 2. p normalised by T 4 as a function of
T/Tc at µ = 0 The Nt=4 SB limit is also shown.

lattice QCD at nonzero T and µ. First one pro-
duces an ensemble of QCD configurations at µ=0
and T 6=0. Then reweighting factors are deter-
mined at µ 6= 0 and at a lowered T. The idea is
expressed in terms of the partition function

Z(β, µ,m) =

∫

DU exp[−Sg(β)] detM(µ,m)

=

∫

DU exp[−Sg(β0)] detM(µ = 0,m) (1)

{

exp[−Sg(β) + Sg(β0)]
detM(µ,m)

detM(µ = 0,m)

}

,

where m is the quark mass, Sg is the action of
the gluonic field (U), at β = 6/g2 coupling. At
nonzero µ one gets a complex fermion determi-
nant detM which spoils importance sampling.
Thus, the first line of eq. (1), µ 6=0, is rewritten
in a way that the second line of eq. (1) is used as
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Figure 3. ∆p = p(µ 6= 0, T ) − p(µ = 0, T ) nor-
malised by T 4 as a function of T/Tc for µB=100,
210, 330, 410 MeV and µB=530 MeV (from bot-
tom to top).

an integration measure (at µ=0 with importance
sampling) and the curly bracket is measured on
each independent configuration and is interpreted
as a weight factor {w(β, µ,m,U)}. In order to
maximise the accuracy of Z the reweighting is
performed along the best weight lines on the µ–
β plane. These best weight lines are defined by
minimising the spread of logw.

Using the above technique, transition (or
hadronic/QGP) configurations are reweighted to
transition (or hadronic/QGP) configurations as
illustrated by Fig. 1. The technique works for
temperatures at, below and above the transition
temperature (Tc). By using the reweighting tech-
nique, the phase diagram [4] and the location of
the critical endpoint [5] was given. Using a Taylor
expansion around µ=0, T 6=0 for small µ can be
used to determine thermal properties [6]. A dif-
ferent method, analytic continuation from imagi-
nary µ, confirmed results of [4,5] on the µ–T dia-
gram [7].

We use 4 ·N3
s lattices at T 6=0 with Ns=8,10,12

for reweighting and we extrapolate to V→∞ us-
ing the available volumes (V ). At T=0 lattices
of 24 · 143 are taken for vacuum subtraction and
to connect lattice parameters to physical quanti-
ties. 14 different β values are used, which corre-
spond to T/Tc = 0.8, . . . , 3. Our T=0 simulations
provided R0 and σ. The lattice spacing at Tc is
≈0.25–0.30 fm. We use 2+1 flavours of dynami-

Figure 4. ∆p of the QCD plasma normalised by
∆p of the free gas (SB) as a function of T/Tc for
the same µB values as in Fig. 3.

cal staggered quarks. While varying β (thus the
temperature) we keep the physical quark masses
constant at mud ≈ 65 MeV and ms ≈ 135 MeV
(the pion to rho mass ratio is mπ/mρ ≈0.66).
The determination of the equation of state

at µ 6=0 needs several observables O at non-
vanishing µ values. This can be calculated by
using the weights of eq. (1)

O(β, µ,m) =

∑

{w(β, µ,m,U)}O(β, µ,m,U)
∑

{w(β, µ,m,U)}
.(2)

p can be obtained from the partition func-
tion as p=T · ∂ logZ/∂V which can be written
as p=(T/V ) · logZ for large homogeneous sys-
tems. On the lattice we can only determine
the derivatives of logZ with respect to the pa-
rameters of the action (β,m, µ). Using the fol-
lowing notation 〈O(β, µ,m)〉= O(β, µ,m)T 6=0

−

O(β, µ = 0,m)T=0
. p can be written as an inte-

gral [8]:

p

T 4
=

1

T 3V

∫

d(β,m, µ) (3)

(〈

∂(logZ)

∂β

〉

,

〈

∂(logZ)

∂m

〉

,

〈

∂(logZ)

∂µ

〉)

.

The integral is by definition independent of the
integration path. The chosen integration paths
are shown on Fig 1.
The energy density can be written as ǫ =

(T 2/V ) ·∂(logZ)/∂T +(µT/V ) ·∂(logZ)/∂µ. By
changing the lattice spacing T and V are simul-
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Figure 5. (ǫ − 3p)/T 4 at µB=0, 210, 410 MeV
and 530 MeV versus T/Tc (from bottom to top).

taneously varied. The special combination ǫ− 3p
contains only derivatives with respect to a and µ:

ǫ − 3p

T 4
= −

a

T 3V

∂ log(Z)

∂a

∣

∣

∣

∣

µ

+
µ

T 3V

∂(logZ)

∂µ

∣

∣

∣

∣

a

.(4)

The quark number density is n = (T/V ) ·
∂ log(Z)/∂µ which can be measured directly or
obtained from p (baryon density is nB=n/3 and
baryonic chemical potential is µB=3µ).
We present direct lattice results on p(µ = 0, T ),

∆p(µ, T ) = p(µ 6= 0, T ) − p(µ = 0, T ), ǫ(µ, T )-
3p(µ, T ) and nB(µ, T ). Note, that in [9] addi-
tional overall factors were used to help the phe-
nomenological interpretation. Our statistical er-
rorbars are rather small, sometimes smaller than
the thickness of the lines.
Fig. 2 shows p at µ=0. On Fig. 3 we present

∆p/T 4 for five different µ values. Fig. 4 gives
∆p(µ, T/Tc) normalised by ∆pSB ≡ ∆p(µ, T →
∞). Notice the interesting scaling behaviour.
∆p/∆pSB depends only on T and it is practically
independent of µ in the analysed region. Fig. 5
shows ǫ-3p normalised by T 4, which tends to zero
for large T . Fig. 6 gives the baryonic density as
a function of T/Tc for different µ-s. As it can be
seen the densities exceed the nuclear density by
up to an order of magnitude.
An important finding concerns the applicability

of our reweighting method: the maximal µ scales
with the volume as µmax · a ∼ (Nt · N

3
s )

−0.25. If
this behaviour persists, one could –in principle–
approach the true continuum limit (a ∼ 1/Nt ∼

Figure 6. nB/T
3 versus T/Tc for the same µB

values as in Fig. 3 (from bottom to top).

(Nt ·N
3
s )

−0.25, thus µmax≈const.).
Future analyses should be done at smaller lat-

tice spacings and quark masses. A detailed ver-
sion of this work can be found elsewhere [9].
Acknowledgements: This work was partially

supported by Hungarian Scientific grants OTKA-
T37615/T34980/T29803/M37071/OMFB1548/-
OMMU-708. For the simulations a modified
version of the MILC public code was used (see
http://physics.indiana.edu/∼sg/milc.html). The
simulations were carried out on the Eötvös Univ.,
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