1,663 research outputs found

    Assessing the relationship between spectral solar irradiance and stratospheric ozone using Bayesian inference

    Full text link
    We investigate the relationship between spectral solar irradiance (SSI) and ozone in the tropical upper stratosphere. We find that solar cycle (SC) changes in ozone can be well approximated by considering the ozone response to SSI changes in a small number individual wavelength bands between 176 and 310 nm, operating independently of each other. Additionally, we find that the ozone varies approximately linearly with changes in the SSI. Using these facts, we present a Bayesian formalism for inferring SC SSI changes and uncertainties from measured SC ozone profiles. Bayesian inference is a powerful, mathematically self-consistent method of considering both the uncertainties of the data and additional external information to provide the best estimate of parameters being estimated. Using this method, we show that, given measurement uncertainties in both ozone and SSI datasets, it is not currently possible to distinguish between observed or modelled SSI datasets using available estimates of ozone change profiles, although this might be possible by the inclusion of other external constraints. Our methodology has the potential, using wider datasets, to provide better understanding of both variations in SSI and the atmospheric response.Comment: 21 pages, 4 figures, Journal of Space Weather and Space Climate (accepted), pdf version is in draft mode of Space Weather and Space Climat

    Laserlight visual cueing device for freezing of gait in Parkinson's disease: a case study of the biomechanics involved

    Get PDF
    AbstractBackground: Freezing of gait (FOG) is a serious gait disorder affecting up to two-thirds of people with Parkinson's disease (PD). Cueing has been explored as a method of generating motor execution using visual transverse lines on the floor. However, the impact of a laser light visual cue remains unclear. Objective: To determine the biomechanical effect of a laser cane on FOG in a participant with PD compared to a healthy age- and gender-matched control. Methods: The participant with PD and healthy control were given a task of initiating gait from standing. Electromyography (EMG) data were collected from the tibialis anterior (TA) and the medial gastrocnemius (GS) muscles using an 8-channel system. A 10-camera system (Qualisys) recorded movement in 6 degrees of freedom and a calibrated anatomical system technique was used to construct a full body model. Center of mass (COM) and center of pressure (COP) were the main outcome measures. Results: The uncued condition showed that separation of COM and COP took longer and was of smaller magnitude than the cued condition. EMG activity revealed prolonged activation of GS, with little to no TA activity. The cued condition showed earlier COM and COP separation. There was reduced fluctuation in GS, with abnormal, early bursts of TA activity. Step length improved in the cued condition compared to the uncued condition. Conclusion: Laserlight visual cueing improved step length beyond a non-cued condition for this patient indicating improved posture and muscle control

    Impacts of ‘change projects’ in Cumbria partnership trust’s Learning Leaders programme: Evaluating qualitative participant end-point reflections.

    Get PDF
    This paper reports findings arising from a broader evaluation of the first tranche of Cumbria Partnership Foundation Trust’s Learning Leaders Programme (LLP). At the final ‘Celebration Day’ of the LLP, all participants (N=15) were invited to fill a form in which they could self-assess the impacts of their projects, and results were analysed using Straussian Grounded Theory. Responses indicated that key concerns related to extant impacts, impact mechanisms (i.e. the manner through which impacts were effected) and obstacles to impact. The overwhelming consensus generated was that the projects had produced strong positive impacts at time of reporting, and had the potential to effect further affirmative change

    High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy

    Get PDF
    We demonstrate the imaging capabilities of energy-filtered transmission electron microscopy at high-energy resolution in the low-energy-loss region, reporting the direct image of a surface plasmon of an elongated gold nanoparticle at energies around 1 eV. Using complimentary model calculations performed within the boundary element method approach we can assign the observed results to the plasmon eigenmodes of the metallic nanoparticle

    Helium irradiation effects in polycrystalline Si, silica, and single crystal Si

    Get PDF
    Transmission electron microscopy (TEM) has been used to investigate the effects of room temperature 6 keV helium ion irradiation of a thin (≈55 nm thick) tri-layer consisting of polycrystalline Si, silica, and single-crystal Si. The ion irradiation was carried out in situ within the TEM under conditions where approximately 24% of the incident ions came to rest in the specimen. This paper reports on the comparative development of irradiation-induced defects (primarily helium bubbles) in the polycrystalline Si and single-crystal Si under ion irradiation and provides direct measurement of a radiation-induced increase in the width of the polycrystalline layer and shrinkage of the silica layer. Analysis using TEM and electron energy-loss spectroscopy has led to the hypothesis that these result from helium-bubble-induced swelling of the silicon and radiation-induced viscoelastic flow processes in the silica under the influence of stresses applied by the swollen Si layers. The silicon and silica layers are sputtered as a result of the helium ion irradiation; however, this is estimated to be a relatively minor effect with swelling and stress-related viscoelastic flow being the dominant mechanisms of dimensional change

    Correlations among superconductivity, structural instability, and band filling in Nb1-xB2 at the critical point x=0.2

    Full text link
    We performed an extensive investigation on the correlations among superconductivity, structural instability and band filling in Nb1-xB2 materials. Structural measurements reveal that a notable phase transformation occurs at x=0.2, corresponding to the Fermi level (EF) in the pseudogap with the minimum total density of states (DOS) as demonstrated by the first-principles calculations. Superconductivity in Nb1-xB2 generally becomes visible in the Nb-deficient materials with x=0.2. Electron energy-loss spectroscopy (EELS) measurements on B K-edge directly demonstrated the presence of a chemical shift arising from the structural transformation. Our systematical experimental results in combination with theoretical analysis suggest that the emergence of hole states in the sigma-bands plays an important role for understanding the superconductivity and structural transition in Nb1-xB2.Comment: 16 pages, 4 figure

    Evidence against Wolbachia symbiosis in Loa loa

    Get PDF
    BACKGROUND: The majority of filarial nematode species are host to Wolbachia bacterial endosymbionts, although a few including Acanthocheilonema viteae, Onchocerca flexuosa and Setaria equina have been shown to be free of infection. Comparisons of species with and without symbionts can provide important information on the role of Wolbachia symbiosis in the biology of the nematode hosts and the contribution of the bacteria to the development of disease. Previous studies by electron microscopy and PCR have failed to detect intracellular bacterial infection in Loa loa. Here we use molecular and immunohistological techniques to confirm this finding. METHODS: We have used a combination of PCR amplification of bacterial genes (16S ribosomal DNA [rDNA], ftsZ and Wolbachia surface protein [WSP]) on samples of L. loa adults, third-stage larvae (L3) and microfilariae (mf) and immunohistology on L. loa adults and mf derived from human volunteers to determine the presence or absence of Wolbachia endosymbionts. Samples used in the PCR analysis included 5 adult female worms, 4 adult male worms, 5 mf samples and 2 samples of L3. The quality and purity of nematode DNA was tested by PCR amplification of nematode 5S rDNA and with diagnostic primers from the target species and used to confirm the absence of contamination from Onchocerca sp., Mansonella perstans, M. streptocerca and Wuchereria bancrofti. Immunohistology was carried out by light and electron microscopy on L. loa adults and mf and sections were probed with rabbit antibodies raised to recombinant Brugia malayi Wolbachia WSP. Samples from nematodes known to be infected with Wolbachia (O. volvulus, O. ochengi, Litomosoides sigmodontis and B. malayi) were used as positive controls and A. viteae as a negative control. RESULTS: Single PCR analysis using primer sets for the bacterial genes 16S rDNA, ftsZ, and WSP were negative for all DNA samples from L. loa. Positive PCR reactions were obtained from DNA samples derived from species known to be infected with Wolbachia, which confirmed the suitability of the primers and PCR conditions. The quality and purity of nematode DNA samples was verified by PCR amplification of 5S rDNA and with nematode diagnostic primers. Additional analysis by 'long PCR' failed to produce any further evidence for Wolbachia symbiosis. Immunohistology of L. loa adults and mf confirmed the results of the PCR with no evidence for Wolbachia symbiosis. CONCLUSION: DNA analysis and immunohistology provided no evidence for Wolbachia symbiosis in L. loa

    Attosecond tracking of light absorption and refraction in fullerenes

    Full text link
    The collective response of matter is ubiquitous and widely exploited, e.g. in plasmonic, optical and electronic devices. Here we trace on an attosecond time scale the birth of collective excitations in a finite system and find distinct new features in this regime. Combining quantum chemical computation with quantum kinetic methods we calculate the time-dependent light absorption and refraction in fullerene that serve as indicators for the emergence of collective modes. We explain the numerically calculated novel transient features by an analytical model and point out the relevance for ultra-fast photonic and electronic applications. A scheme is proposed to measure the predicted effects via the emergent attosecond metrology.Comment: 11 pages, 3 figures, accepted in Phys. Rev.

    Compositional analysis of InAs-GaAs-GaSb heterostructures by low-loss electron energy loss spectroscopy

    Get PDF
    As an alternative to Core-Loss Electron Energy Loss Spectroscopy, Low-Loss EELS is suitable for compositional analysis of complex heterostructures, such as the InAs-GaAs-GaSb system, since in this energy range the edges corresponding to these elements are better defined than in Core-Loss. Furthermore, the analysis of the bulk plasmon peak, which is present in this energy range, also provides information about the composition. In this work, compositional information in an InAs-GaAs-GaSb heterostructure has been obtained from Low-Loss EEL spectra
    • …
    corecore