128 research outputs found
Viral RNAs are unusually compact.
A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly
Quality control of MATa1 splicing and exon skipping by nuclear RNA degradation
The MATa1 gene encodes a transcriptional repressor that is an important modulator of sex-specific gene expression in Saccharomyces cerevisiae. MATa1 contains two small introns, both of which need to be accurately excised for proper expression of a functional MATa1 product and to avoid production of aberrant forms of the repressor. Here, we show that unspliced and partially spliced forms of the MATa1 mRNA are degraded by the nuclear exonuclease Rat1p, the nuclear exosome and by the nuclear RNase III endonuclease Rnt1p to prevent undesired expression of non-functional a1 proteins. In addition, we show that mis-spliced forms of MATa1 in which the splicing machinery has skipped exon2 and generated exon1–exon3 products are degraded by the nuclear 5′–3′ exonuclease Rat1p and by the nuclear exosome. This function for Rat1p and the nuclear exosome in the degradation of exon-skipped products is also observed for three other genes that contain two introns (DYN2, SUS1, YOS1), identifying a novel nuclear quality control pathway for aberrantly spliced RNAs that have skipped exons
The Ghrelin Signalling System Is Involved in the Consumption of Sweets
The gastric-derived orexigenic peptide ghrelin affects brain circuits involved in energy balance as well as in reward. Indeed, ghrelin activates an important reward circuit involved in natural- as well as drug-induced reward, the cholinergic-dopaminergic reward link. It has been hypothesized that there is a common reward mechanism for alcohol and sweet substances in both animals and humans. Alcohol dependent individuals have higher craving for sweets than do healthy controls and the hedonic response to sweet taste may, at least in part, depend on genetic factors. Rat selectively bred for high sucrose intake have higher alcohol consumption than non-sucrose preferring rats and vice versa. In the present study a group of alcohol-consuming individuals selected from a population cohort was investigated for genetic variants of the ghrelin signalling system in relation to both their alcohol and sucrose consumption. Moreover, the effects of GHS-R1A antagonism on voluntary sucrose- intake and operant self-administration, as well as saccharin intake were investigated in preclinical studies using rodents. The effects of peripheral grelin administration on sucrose intake were also examined. Here we found associations with the ghrelin gene haplotypes and increased sucrose consumption, and a trend for the same association was seen in the high alcohol consumers. The preclinical data show that a GHS-R1A antagonist reduces the intake and self-administration of sucrose in rats as well as saccharin intake in mice. Further, ghrelin increases the intake of sucrose in rats. Collectively, our data provide a clear indication that the GHS-R1A antagonists reduces and ghrelin increases the intake of rewarding substances and hence, the central ghrelin signalling system provides a novel target for the development of drug strategies to treat addictive behaviours
The CCR4-NOT Complex Physically and Functionally Interacts with TRAMP and the Nuclear Exosome
BACKGROUND: Ccr4-Not is a highly conserved multi-protein complex consisting in yeast of 9 subunits, including Not5 and the major yeast deadenylase Ccr4. It has been connected functionally in the nucleus to transcription by RNA polymerase II and in the cytoplasm to mRNA degradation. However, there has been no evidence so far that this complex is important for RNA degradation in the nucleus. METHODOLOGY/PRINCIPAL FINDINGS: In this work we point to a new role for the Ccr4-Not complex in nuclear RNA metabolism. We determine the importance of the Ccr4-Not complex for the levels of non-coding nuclear RNAs, such as mis-processed and polyadenylated snoRNAs, whose turnover depends upon the nuclear exosome and TRAMP. Consistently, mutation of both the Ccr4-Not complex and the nuclear exosome results in synthetic slow growth phenotypes. We demonstrate physical interactions between the Ccr4-Not complex and the exosome. First, Not5 co-purifies with the exosome. Second, several exosome subunits co-purify with the Ccr4-Not complex. Third, the Ccr4-Not complex is important for the integrity of large exosome-containing complexes. Finally, we reveal a connection between the Ccr4-Not complex and TRAMP through the association of the Mtr4 helicase with the Ccr4-Not complex and the importance of specific subunits of Ccr4-Not for the association of Mtr4 with the nuclear exosome subunit Rrp6. CONCLUSIONS/SIGNIFICANCE: We propose a model in which the Ccr4-Not complex may provide a platform contributing to dynamic interactions between the nuclear exosome and its co-factor TRAMP. Our findings connect for the first time the different players involved in nuclear and cytoplasmic RNA degradation
Substrate specificity of the TRAMP nuclear surveillance complexes
During nuclear surveillance in yeast and human cells, the RNA exosome functions together with the TRAMP complexes. Here, the authors defined the protein composition of the TRAMP complexes and identified specific RNA binding sites for the different TRAMP components
Ghrelin Modulates the fMRI BOLD Response of Homeostatic and Hedonic Brain Centers Regulating Energy Balance in the Rat
The orexigenic gut-brain peptide, ghrelin and its G-protein coupled receptor, the growth hormone secretagogue receptor
1a (GHS-R1A) are pivotal regulators of hypothalamic feeding centers and reward processing neuronal circuits of the brain.
These systems operate in a cooperative manner and receive a wide array of neuronal hormone/transmitter messages and
metabolic signals. Functional magnetic resonance imaging was employed in the current study to map BOLD responses to
ghrelin in different brain regions with special reference on homeostatic and hedonic regulatory centers of energy balance.
Experimental groups involved male, ovariectomized female and ovariectomized estradiol-replaced rats. Putative modulation
of ghrelin signaling by endocannabinoids was also studied. Ghrelin-evoked effects were calculated as mean of the BOLD
responses 30 minutes after administration. In the male rat, ghrelin evoked a slowly decreasing BOLD response in all studied
regions of interest (ROI) within the limbic system. This effect was antagonized by pretreatment with GHS-R1A antagonist
JMV2959. The comparison of ghrelin effects in the presence or absence of JMV2959 in individual ROIs revealed significant
changes in the prefrontal cortex, nucleus accumbens of the telencephalon, and also within hypothalamic centers like the
lateral hypothalamus, ventromedial nucleus, paraventricular nucleus and suprachiasmatic nucleus. In the female rat, the
ghrelin effects were almost identical to those observed in males. Ovariectomy and chronic estradiol replacement had no
effect on the BOLD response. Inhibition of the endocannabinoid signaling by rimonabant significantly attenuated the
response of the nucleus accumbens and septum. In summary, ghrelin can modulate hypothalamic and mesolimbic
structures controlling energy balance in both sexes. The endocannabinoid signaling system contributes to the
manifestation of ghrelin’s BOLD effect in a region specific manner. In females, the estradiol milieu does not influence the
BOLD response to ghrelin
Hedonic and incentive signals for body weight control
Here we review the emerging neurobiological understanding of the role of the brain’s reward system in the regulation of body weight in health and in disease. Common obesity is characterized by the over-consumption of palatable/rewarding foods, reflecting an imbalance in the relative importance of hedonic versus homeostatic signals. The popular ‘incentive salience theory’ of food reward recognises not only a hedonic/pleasure component (‘liking’) but also an incentive motivation component (‘wanting’ or ‘reward-seeking’). Central to the neurobiology of the reward mechanism is the mesoaccumbal dopamine system that confers incentive motivation not only for natural rewards such as food but also by artificial rewards (eg. addictive drugs). Indeed, this mesoaccumbal dopamine system receives and integrates information about the incentive (rewarding) value of foods with information about metabolic status. Problematic over-eating likely reflects a changing balance in the control exerted by hypothalamic versus reward circuits and/or it could reflect an allostatic shift in the hedonic set point for food reward. Certainly, for obesity to prevail, metabolic satiety signals such as leptin and insulin fail to regain control of appetitive brain networks, including those involved in food reward. On the other hand, metabolic control could reflect increased signalling by the stomach-derived orexigenic hormone, ghrelin. We have shown that ghrelin activates the mesoaccumbal dopamine system and that central ghrelin signalling is required for reward from both chemical drugs (eg alcohol) and also from palatable food. Future therapies for problematic over-eating and obesity may include drugs that interfere with incentive motivation, such as ghrelin antagonists
Nitric oxide synthases and tubal ectopic pregnancies induced by Chlamydia infection: basic and clinical insights
Human ectopic pregnancy (EP) remains a common cause of pregnancy-related first trimester death. Nitric oxide (NO) is synthesized from L-arginine by three NO synthases (NOS) in different tissues, including the Fallopian tube. Studies of knockout mouse models have improved our understanding of the function of NOS isoforms in reproduction, but their roles and specific mechanisms in infection-induced tubal dysfunction have not been fully elucidated. Here, we provide an overview of the expression, regulation and possible function of NOS isoforms in the Fallopian tube, highlighting the effects of infection-induced changes in the tubal cellular microenvironment (imbalance of NO production) on tubal dysfunction and the potential involvement of NOS isoforms in tubal EP after Chlamydia trachomatis genital infection. The non-equivalent regulation of tubal NOS isoforms during the menstrual cycle suggests that endogenous ovarian steroid hormones regulate NOS in an isoform-specific manner. The current literature suggests that infection with C. trachomatis induces an inflammatory response that eventually leads to tubal epithelial destruction and functional impairment, caused by a high NO output mediated by inducible NOS (iNOS). Therefore, tissue-specific therapeutic approaches to suppress iNOS expression may help to prevent ectopic implantation in patients with prior C. trachomatis infection of the Fallopian tube
Genome-wide search for breast cancer linkage in large Icelandic non-BRCA1/2 families
Abstract
Introduction:
A significant proportion of high-risk breast cancer families are not explained by mutations in known genes. Recent genome-wide searches (GWS) have not revealed any single major locus reminiscent of BRCA1 and BRCA2, indicating that still unidentified genes may explain relatively few families each or interact in a way obscure to linkage analyses. This has drawn attention to possible benefits of studying populations where genetic heterogeneity might be reduced. We thus performed a GWS for linkage on nine Icelandic multiple-case non-BRCA1/2 families of desirable size for mapping highly penetrant loci. To follow up suggestive loci, an additional 13 families from other Nordic countries were genotyped for selected markers.
Methods:
GWS was performed using 811 microsatellite markers providing about five centiMorgan (cM) resolution. Multipoint logarithm of odds (LOD) scores were calculated using parametric and nonparametric methods. For selected markers and cases, tumour tissue was compared to normal tissue to look for allelic loss indicative of a tumour suppressor gene.
Results:
The three highest signals were located at chromosomes 6q, 2p and 14q. One family contributed suggestive LOD scores (LOD 2.63 to 3.03, dominant model) at all these regions, without consistent evidence of a tumour suppressor gene. Haplotypes in nine affected family members mapped the loci to 2p23.2 to p21, 6q14.2 to q23.2 and 14q21.3 to q24.3. No evidence of a highly penetrant locus was found among the remaining families. The heterogeneity LOD (HLOD) at the 6q, 2p and 14q loci in all families was 3.27, 1.66 and 1.24, respectively. The subset of 13 Nordic families showed supportive HLODs at chromosome 6q (ranging from 0.34 to 1.37 by country subset). The 2p and 14q loci overlap with regions indicated by large families in previous GWS studies of breast cancer.
Conclusions:
Chromosomes 2p, 6q and 14q are candidate sites for genes contributing together to high breast cancer risk. A polygenic model is supported, suggesting the joint effect of genes in contributing to breast cancer risk to be rather common in non-BRCA1/2 families. For genetic counselling it would seem important to resolve the mode of genetic interaction
- …