183 research outputs found

    Cost-effectiveness of nicotine patches for smoking cessation in pregnancy: a placebo randomised controlled trial (SNAP)

    Get PDF
    Introduction: Smoking during pregnancy is the most important, preventable cause of adverse pregnancy outcomes including miscarriage, premature birth and low birth weight, with huge financial costs to the NHS. However, there are very few published economic evaluations of smoking cessation interventions in pregnancy and previous studies are predominantly US-based and do not present incremental cost-effectiveness ratios (ICER). A number of studies have demonstrated cost-effectiveness of nicotine replacement therapy (NRT) in the general population, but this has yet to be tested among pregnant smokers. Methods: A cost-effectiveness analysis was undertaken alongside the SNAP trial to compare NRT patches plus behavioural support to behavioural support alone, for pregnant women who smoked. Results: At delivery, biochemically verified quit rates were slightly higher at 9.4% in the NRT group compared to 7.6% in the control group (odds ratio: 1.26, 95% CI: 0.82-1.96), at an increased cost of around £90 per participant. Higher costs in the NRT group were mainly attributable to the cost of NRT patches (mean = £46.07). The incremental cost-effectiveness ratio associated with NRT was £4,926 per quitter and a sensitivity analysis including only singleton births yielded an ICER of £4,156 per quitter. However, wide confidence intervals indicated a high level of uncertainty. Conclusions: Without a specific willingness to pay threshold, and due to high levels of statistical uncertainty, it is hard to determine the cost-effectiveness of NRT in this population. Furthermore, future research should address compliance issues, as these may dilute any potential effects of NRT, thus reducing the cost-effectiveness

    Regulation of Sodium Channel Function by Bilayer Elasticity: The Importance of Hydrophobic Coupling. Effects of Micelle-forming Amphiphiles and Cholesterol

    Get PDF
    Membrane proteins are regulated by the lipid bilayer composition. Specific lipid–protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, local bilayer deformation. Lipid bilayers are elastic bodies, and the energetic cost of the bilayer deformation contributes to the total energetic cost of the protein conformational change. The energetics and kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel–bilayer hydrophobic interactions link a “conformational” change (the monomer↔dimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (β-octyl-glucoside, Genapol X-100, Triton X-100, and reduced Triton X-100) that make lipid bilayers less “stiff”, as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer–protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein function

    Subgroups of Paediatric Acute Lymphoblastic Leukaemia Might Differ Significantly in Genetic Predisposition to Asparaginase Hypersensitivity.

    Get PDF
    L-asparaginase (ASP) is a key element in the treatment of paediatric acute lymphoblastic leukaemia (ALL). However, hypersensitivity reactions (HSRs) to ASP are major challenges in paediatric patients. Our aim was to investigate genetic variants that may influence the risk to Escherichia coli-derived ASP hypersensitivity. Sample and clinical data collection was carried out from 576 paediatric ALL patients who were treated according to protocols from the Berlin-Frankfurt-Munster Study Group. A total of 20 single nucleotide polymorphisms (SNPs) in GRIA1 and GALNT10 genes were genotyped. Patients with GRIA1 rs4958351 AA/AG genotype showed significantly reduced risk to ASP hypersensitivity compared to patients with GG genotype in the T-cell ALL subgroup (OR = 0.05 (0.01-0.26); p = 4.70E-04), while no such association was found in pre-B-cell ALL. In the medium risk group two SNPs of GRIA1 (rs2055083 and rs707176) were associated significantly with the occurrence of ASP hypersensitivity (OR = 0.21 (0.09-0.53); p = 8.48E-04 and OR = 3.02 (1.36-6.73); p = 6.76E-03, respectively). Evaluating the genders separately, however, the association of rs707176 with ASP HSRs was confined only to females. Our results suggest that genetic variants of GRIA1 might influence the risk to ASP hypersensitivity, but subgroups of patients can differ significantly in this respect

    Complex attosecond waveform synthesis at fel fermi

    Get PDF
    Free-electron lasers (FELs) can produce radiation in the short wavelength range extending from the extreme ultraviolet (XUV) to the X-rays with a few to a few tens of femtoseconds pulse duration. These facilities have enabled significant breakthroughs in the field of atomic, molecular, and optical physics, implementing different schemes based on two-color photoionization mechanisms. In this article, we present the generation of attosecond pulse trains (APTs) at the seeded FEL FERMI using the beating of multiple phase-locked harmonics. We demonstrate the complex attosecond waveform shaping of the generated APTs, exploiting the ability to manipulate independently the amplitudes and the phases of the harmonics. The described generalized attosecond waveform synthesis technique with an arbitrary number of phase-locked harmonics will allow the generation of sub-100 as pulses with programmable electric fields

    Fatty acid modulation and polyamine block of GluK2 kainate receptors analyzed by scanning mutagenesis

    Get PDF
    RNA editing of kainate receptor subunits at the Q/R site determines their susceptibility to inhibition by cis-unsaturated fatty acids as well as block by cytoplasmic polyamines. Channels comprised of unedited (Q) subunits are strongly blocked by polyamines, but insensitive to fatty acids, such as arachidonic acid (AA) and docosahexaenoic acid (DHA), whereas homomeric edited (R) channels resist polyamine block but are inhibited by AA and DHA. In the present study, we have analyzed fatty acid modulation of whole-cell currents mediated by homomeric recombinant GluK2 (formerly GluR6) channels with individual residues in the pore-loop, M1 and M3 transmembrane helices replaced by scanning mutagenesis. Our results define three abutting surfaces along the M1, M2, and M3 helices where gain-of-function substitutions render GluK2(Q) channels susceptible to fatty acid inhibition. In addition, we identify four locations in the M3 helix (F611, L614, S618, and T621) at the level of the central cavity where Arg substitution increases relative permeability to chloride and eliminates polyamine block. Remarkably, for two of these positions, L614R and S618R, exposure to fatty acids reduces the apparent chloride permeability and potentiates whole-cell currents ∼5 and 2.5-fold, respectively. Together, our results suggest that AA and DHA alter the orientation of M3 in the open state, depending on contacts at the interface between M1, M2, and M3. Moreover, our results demonstrate the importance of side chains within the central cavity in determining ionic selectivity and block by cytoplasmic polyamines despite the inverted orientation of GluK2 as compared with potassium channels and other pore-loop family members

    Measurement of the Rates of Synthesis of Three Components of Ribosomes of Mycobacterium fortuitum: A Theoretical Approach to qRT-PCR Experimentation

    Get PDF
    BACKGROUND: Except for the ribosomal protein L12 (rplL), ribosomal proteins are present as one copy per ribosome; L12 (rplL) is unusual because it is present as four copies per ribosome. Thus, the strategies used by Mycobacterium fortuitum to regulate ribosomal protein synthesis were investigated, including evaluations of the rates of chain elongations of 16S rRNA, rplL and ribosomal protein S12 (rpsL). METHODOLOGY: RNA was isolated from cell cultures and cDNA was prepared. The numbers of cDNA copies of 16S rRNA, precursor-16S rRNA and transcripts of rpsL and rplL were quantified by qRT-PCR and then related to the rates of 16S rRNA, rpsL and rplL chain elongations by means of a mathematical framework for coupled transcription/translation. PRINCIPAL FINDINGS: The rates of synthesis of 16S rRNA, rpsL and rplL respectively were found to be approximately 50 x 10(3) nucleotides h(-1), 1.6 x 10(3) amino acid residues h(-1) and 3.4 x 10(3) amino acid residues h(-1). The number of transcripts of rplL was approximately twice that of rpsL. These data account for the presence of one copy of rpsL and four copies of rplL per ribosome, and reveal that the rate of M. fortuitum ribosome synthesis was closer to that of M. tuberculosis than to E. coli. Except for rplJ, the elongation rate obtained for rpsL was inferred to be appropriate for all other proteins present as one copy per ribosome. SIGNIFICANCE: The results obtained provide the basis for a comprehensive view of the kinetics of ribosome synthesis, and of the ways that bacterial cells utilize genes encoding ribosomal proteins. The methodology also applies to proteins involved in transcription, energy generation and to bacterial proteins in general. The method proposed for measuring the fidelity of cDNA preparations is intrinsically much more sensitive than procedures that measure the integrity of 16S rRNA

    Development and Function of CD94-Deficient Natural Killer Cells

    Get PDF
    The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions

    Intronic Alus Influence Alternative Splicing

    Get PDF
    Examination of the human transcriptome reveals higher levels of RNA editing than in any other organism tested to date. This is indicative of extensive double-stranded RNA (dsRNA) formation within the human transcriptome. Most of the editing sites are located in the primate-specific retrotransposed element called Alu. A large fraction of Alus are found in intronic sequences, implying extensive Alu-Alu dsRNA formation in mRNA precursors. Yet, the effect of these intronic Alus on splicing of the flanking exons is largely unknown. Here, we show that more Alus flank alternatively spliced exons than constitutively spliced ones; this is especially notable for those exons that have changed their mode of splicing from constitutive to alternative during human evolution. This implies that Alu insertions may change the mode of splicing of the flanking exons. Indeed, we demonstrate experimentally that two Alu elements that were inserted into an intron in opposite orientation undergo base-pairing, as evident by RNA editing, and affect the splicing patterns of a downstream exon, shifting it from constitutive to alternative. Our results indicate the importance of intronic Alus in influencing the splicing of flanking exons, further emphasizing the role of Alus in shaping of the human transcriptom

    CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice

    Get PDF
    Neuroinflammation and microglial activation are significant processes in Alzheimer's disease pathology. Recent genome-wide association studies have highlighted multiple immune-related genes in association with Alzheimer's disease, and experimental data have demonstrated microglial proliferation as a significant component of the neuropathology. In this study, we tested the efficacy of the selective CSF1R inhibitor JNJ-40346527 (JNJ-527) in the P301S mouse tauopathy model. We first demonstrated the anti-proliferative effects of JNJ-527 on microglia in the ME7 prion model, and its impact on the inflammatory profile, and provided potential CNS biomarkers for clinical investigation with the compound, including pharmacokinetic/pharmacodynamics and efficacy assessment by TSPO autoradiography and CSF proteomics. Then, we showed for the first time that blockade of microglial proliferation and modification of microglial phenotype leads to an attenuation of tau-induced neurodegeneration and results in functional improvement in P301S mice. Overall, this work strongly supports the potential for inhibition of CSF1R as a target for the treatment of Alzheimer's disease and other tau-mediated neurodegenerative diseases
    corecore