63 research outputs found

    Penerapan Model Pembelajaran Group Investigation terhadap Kemampuan Pemecahan Masalah Siswa pada Materi Sistem Pencernaan pada Manusia

    Full text link
    Penelitian ini bertujuan untuk mengetahui penerapan model pembelajaran Group Investigation (GI) terhadap kemampuan pemecahan masalah siswa pada materi sistem pencernaan pada manusia.Variabel bebas dalam penelitian ini adalah model pembelajaran Group Investigation (GI)dan variabel terikatnya adalah kemampuan pemecahan masalah siswa. Metode yang diterapkan dalam penelitian ini adalah metode kuantitatif. Bentuk penelitian ini adalah penelitian eksperimen. Bentuk desain quasi eksperimen yang digunakan dalam penelitian ini adalah Nonequivalent Control Group Design. Teknik sampling yang digunakan adalah Sampling Jenuh. Teknik pengumpulan data yang digunakan adalah teknik observasi, teknik pengukuran, dan teknik komunikasi tidak langsung. Alat pengumpulan data yang digunakan adalah Silabus, RPP, LKS, lembar observasi, soal tes, dan angket. Perhitungan hasil kemampuan pemecahan masalah siswa diperoleh nilai rata-rata pretest kelas eksperimen 43,8 sedangkan posttest 73,9 dan kelas kontrol nilai rata-rata pretest 43,8 sedangkan posttest60,6. Hasil uji hipotesis pada data posttest didapatkan nilai signifikansi (Asimp. Sig. 2-tailed) sebesar 0,000, dan hasil ini kurang dari 0,05 (0,000<0,05) maka Ha diterima. Hal ini menunjukkan bahwa terdapat perbedaanyang signifikan kemampuan pemecahan masalah siswa pada materi sistem pencernaan pada manusia antara kelas eksperimen dan kelas kontrol di kelas VIII SMP Negeri 2 Belimbing Hulu. Hasil analisis angket diperoleh rata-rata nilai 98,58% dengan kategori sangat kuat

    Excessive Unbalanced Meat Consumption in the First Year of Life Increases Asthma Risk in the PASTURE and LUKAS2 Birth Cohorts

    Get PDF
    A higher diversity of food items introduced in the first year of life has been inversely related to subsequent development of asthma. In the current analysis, we applied latent class analysis (LCA) to systematically assess feeding patterns and to relate them to asthma risk at school age. PASTURE (N=1133) and LUKAS2 (N=228) are prospective birth cohort studies designed to evaluate protective and risk factors for atopic diseases, including dietary patterns. Feeding practices were reported by parents in monthly diaries between the 4(th) and 12(th) month of life. For 17 common food items parents indicated frequency of feeding during the last 4 weeks in 4 categories. The resulting 153 ordinal variables were entered in a LCA. The intestinal microbiome was assessed at the age of 12 months by 16S rRNA sequencing. Data on feeding practice with at least one reported time point was available in 1042 of the 1133 recruited children. Best LCA model fit was achieved by the 4-class solution. One class showed an elevated risk of asthma at age 6 as compared to the other classes (adjusted odds ratio (aOR): 8.47, 95% CI 2.52-28.56, p = 0.001) and was characterized by daily meat consumption and rare consumption of milk and yoghurt. A refined LCA restricted to meat, milk, and yoghurt confirmed the asthma risk effect of a particular class in PASTURE and independently in LUKAS2, which we thus termed unbalanced meat consumption (UMC). The effect of UMC was particularly strong for non-atopic asthma and asthma irrespectively of early bronchitis (aOR: 17.0, 95% CI 5.2-56.1, p < 0.001). UMC fostered growth of iron scavenging bacteria such as Acinetobacter (aOR: 1.28, 95% CI 1.00-1.63, p = 0.048), which was also related to asthma (aOR: 1.55, 95% CI 1.18-2.03, p = 0.001). When reconstructing bacterial metabolic pathways from 16S rRNA sequencing data, biosynthesis of siderophore group nonribosomal peptides emerged as top hit (aOR: 1.58, 95% CI 1.13-2.19, p = 0.007). By a data-driven approach we found a pattern of overly meat consumption at the expense of other protein sources to confer risk of asthma. Microbiome analysis of fecal samples pointed towards overgrowth of iron-dependent bacteria and bacterial iron metabolism as a potential explanation.Peer reviewe

    Bioavailability and allergoprotective capacity of milk-associated conjugated linoleic acid in a murine model of allergic airway inflammation

    Get PDF
    BACKGROUND Cross-sectional epidemiological studies have demonstrated that farm milk from traditional farm settings possesses allergoprotective properties. Up to now, it has not been clarified which milk ingredient is responsible for protection against allergic diseases. As farm milk is rich in conjugated linoleic acids (CLA), it is hypothesized that this n-3 polyunsaturated fatty acid family contributes to the allergoprotective capacity of farm milk. We aim to prove this hypothesis in a murine model of allergic airway inflammation. METHODS To prove the bioavailability and allergoprotective capacity of milk-associated CLA in a standardized protocol, milk batches that differed significantly in terms of their CLA content were spray dried and incorporated into a basic diet by substituting the regular sunflower fat fraction. Initially, the milk CLA uptake from the diet was monitored via measurement of the CLA content in plasma and erythrocyte membranes obtained from supplemented mice. To determine whether a milk CLA-enriched diet possesses allergoprotective properties, female Balb/c mice were fed the milk CLA-enriched diet ahead of sensitization and a challenge with ovalbumin (OVA) and the parameters of airway inflammation and eisosanoid pattern were measured. RESULTS In animals, supplementation with a diet rich in milk CLA resulted in elevated CLA levels in plasma and erythrocyte membranes, indicating bioavailability of milk fatty acids. Though membrane-associated phospholipid patterns were affected by supplementation with milk CLA, this application neither reduced the hallmarks of allergic airway inflammation in sensitized and OVA-challenged mice nor modified the eiconsanoid pattern in the bronchoalveolar lavage fluid of these animals. CONCLUSION Milk-associated CLA was not capable of preventing murine allergic airway inflammation in an animal model of OVA-induced allergic airway inflammation

    Genome-wide interaction study of early-life smoking exposure on time-to-asthma onset in childhood

    Get PDF
    Background: Asthma, a heterogeneous disease with variable age of onset, results from the interplay between genetic and environmental factors. Early-life tobacco smoke (ELTS) exposure is a major asthma risk factor. Only a few genetic loci have been reported to interact with ELTS exposure in asthma. Objective: Our aim was to identify new loci interacting with ELTS exposure on time-to-asthma onset (TAO) in childhood.Methods: We conducted genome-wide interaction analyses of ELTS exposure on time-to-asthma onset in childhood in five European-ancestry studies (totaling 8,273 subjects) using Cox proportional-hazard model. The results of all five genome-wide analyses were meta-analyzed.Results: The 13q21 locus showed genome-wide significant interaction with ELTS exposure (P=4.3x10-8 for rs7334050 within KLHL1 with consistent results across the five studies). Suggestive interactions (P&lt;5x10-6) were found at three other loci: 20p12 (rs13037508 within MACROD2; P=4.9x10-7), 14q22 (rs7493885 near NIN; P=2.9x10-6) and 2p22 (rs232542 near CYP1B1; P=4.1x10-6). Functional annotations and the literature showed that the lead SNPs at these four loci influence DNA methylation in the blood and are located nearby CpG sites reported to be associated with exposure to tobacco smoke components, which strongly support our findings.Conclusion and Clinical Relevance: We identified novel candidate genes interacting with ELTS exposure on time-to-asthma onset in childhood. These genes have plausible biological relevance related to tobacco smoke exposure. Further epigenetic and functional studies are needed to confirm these findings and to shed light on the underlying mechanisms

    Excessive Unbalanced Meat Consumption in the First Year of Life Increases Asthma Risk in the PASTURE and LUKAS2 Birth Cohorts.

    Get PDF
    A higher diversity of food items introduced in the first year of life has been inversely related to subsequent development of asthma. In the current analysis, we applied latent class analysis (LCA) to systematically assess feeding patterns and to relate them to asthma risk at school age. PASTURE (N=1133) and LUKAS2 (N=228) are prospective birth cohort studies designed to evaluate protective and risk factors for atopic diseases, including dietary patterns. Feeding practices were reported by parents in monthly diaries between the 4th and 12th month of life. For 17 common food items parents indicated frequency of feeding during the last 4 weeks in 4 categories. The resulting 153 ordinal variables were entered in a LCA. The intestinal microbiome was assessed at the age of 12 months by 16S rRNA sequencing. Data on feeding practice with at least one reported time point was available in 1042 of the 1133 recruited children. Best LCA model fit was achieved by the 4-class solution. One class showed an elevated risk of asthma at age 6 as compared to the other classes (adjusted odds ratio (aOR): 8.47, 95% CI 2.52-28.56, p = 0.001) and was characterized by daily meat consumption and rare consumption of milk and yoghurt. A refined LCA restricted to meat, milk, and yoghurt confirmed the asthma risk effect of a particular class in PASTURE and independently in LUKAS2, which we thus termed unbalanced meat consumption (UMC). The effect of UMC was particularly strong for non-atopic asthma and asthma irrespectively of early bronchitis (aOR: 17.0, 95% CI 5.2-56.1, p < 0.001). UMC fostered growth of iron scavenging bacteria such as Acinetobacter (aOR: 1.28, 95% CI 1.00-1.63, p = 0.048), which was also related to asthma (aOR: 1.55, 95% CI 1.18-2.03, p = 0.001). When reconstructing bacterial metabolic pathways from 16S rRNA sequencing data, biosynthesis of siderophore group nonribosomal peptides emerged as top hit (aOR: 1.58, 95% CI 1.13-2.19, p = 0.007). By a data-driven approach we found a pattern of overly meat consumption at the expense of other protein sources to confer risk of asthma. Microbiome analysis of fecal samples pointed towards overgrowth of iron-dependent bacteria and bacterial iron metabolism as a potential explanation

    Continuous Rather Than Solely Early Farm Exposure Protects From Hay Fever Development

    Get PDF
    BACKGROUND: An important window of opportunity for early-life exposures has been proposed for the development of atopic eczema and asthma.OBJECTIVE: However, it is unknown whether hay fever with a peak incidence around late school age to adolescence is similarly determined very early in life.METHODS: In the Protection against Allergy-Study in Rural Environments (PASTURE) birth cohort potentially relevant exposures such as farm milk consumption and exposure to animal sheds were assessed at multiple time points from infancy to age 10.5 years and classified by repeated measure latent class analyses (n [ 769). Fecal samples at ages 2 and 12 months were sequenced by 16S rRNA. Hay fever was defined by parent -reported symptoms and/or physician's diagnosis of hay fever in the last 12 months using questionnaires at 10.5 years.RESULTS: Farm children had half the risk of hay fever at 10.5 years (adjusted odds ratio [aOR] 0.50; 95% CI 0.31-0.79) than that of nonfarm children. Whereas early life events such as gut microbiome richness at 12 months (aOR 0.66; 95% CI 0.46-0.96) and exposure to animal sheds in the first 3 years of life (aOR 0.26; 95% CI 0.06-1.15) were determinants of hay fever, the continuous consumption of farm milk from infancy up to school age was necessary to exert the protective effect (aOR 0.35; 95% CI 0.17-0.72).CONCLUSIONS: While early life events determine the risk of subsequent hay fever, continuous exposure is necessary to achieve protection. These findings argue against the notion that only early life exposures set long-lasting trajectories. (c) 2022 The Authors. Published by Elsevier IncPeer reviewe

    Latent class analysis reveals clinically relevant atopy phenotypes in 2 birth cohorts

    Get PDF
    Phenotypes of childhood-onset asthma are characterized by distinct trajectories and functional features. For atopy, definition of phenotypes during childhood is less clear.; We sought to define phenotypes of atopic sensitization over the first 6 years of life using a latent class analysis (LCA) integrating 3 dimensions of atopy: allergen specificity, time course, and levels of specific IgE (sIgE).; Phenotypes were defined by means of LCA in 680 children of the Multizentrische Allergiestudie (MAS) and 766 children of the Protection against allergy: Study in Rural Environments (PASTURE) birth cohorts and compared with classical nondisjunctive definitions of seasonal, perennial, and food sensitization with respect to atopic diseases and lung function. Cytokine levels were measured in the PASTURE cohort.; The LCA classified predominantly by type and multiplicity of sensitization (food vs inhalant), allergen combinations, and sIgE levels. Latent classes were related to atopic disease manifestations with higher sensitivity and specificity than the classical definitions. LCA detected consistently in both cohorts a distinct group of children with severe atopy characterized by high seasonal sIgE levels and a strong propensity for asthma; hay fever; eczema; and impaired lung function, also in children without an established asthma diagnosis. Severe atopy was associated with an increased IL-5/IFN-γ ratio. A path analysis among sensitized children revealed that among all features of severe atopy, only excessive sIgE production early in life affected asthma risk.; LCA revealed a set of benign, symptomatic, and severe atopy phenotypes. The severe phenotype emerged as a latent condition with signs of a dysbalanced immune response. It determined high asthma risk through excessive sIgE production and directly affected impaired lung function

    Farm-like indoor microbiota in non-farm homes protects children from asthma development

    Get PDF
    Asthma prevalence has increased in epidemic proportions with urbanization, but growing up on traditional farms offers protection even today(1). The asthma-protective effect of farms appears to be associated with rich home dust microbiota(2,3), which could be used to model a health-promoting indoor microbiome. Here we show by modeling differences in house dust microbiota composition between farm and non-farm homes of Finnish birth cohorts(4) that in children who grow up in non-farm homes, asthma risk decreases as the similarity of their home bacterial microbiota composition to that of farm homes increases. The protective microbiota had a low abundance of Streptococcaceae relative to outdoor-associated bacterial taxa. The protective effect was independent of richness and total bacterial load and was associated with reduced proinflammatory cytokine responses against bacterial cell wall components ex vivo. We were able to reproduce these findings in a study among rural German children(2) and showed that children living in German non-farm homes with an indoor microbiota more similar to Finnish farm homes have decreased asthma risk. The indoor dust microbiota composition appears to be a definable, reproducible predictor of asthma risk and a potential modifiable target for asthma prevention.Peer reviewe
    • …
    corecore