5 research outputs found

    Feasibility of a lifestyle intervention in early pregnancy to prevent deterioration of glucose tolerance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In conjunction with the growing prevalence of obesity and the older age of pregnant women gestational diabetes (GDM) is a major health problem.</p> <p>The aim of the study was to evaluate if a lifestyle intervention since early pregnancy is feasible in improving the glucose tolerance of women at a high-risk for GDM in Finland.</p> <p>Methods</p> <p>A 75-g oral glucose tolerance test (OGTT) was performed in early pregnancy (n = 102). Women at high risk for GDM (n = 54) were randomized at weeks 8-12 from Apr 2005 to May 2006 to a lifestyle intervention group (n = 27) or to a close follow-up group (n = 27). An OGTT was performed again at weeks 26-28 for the lifestyle intervention and close follow-up groups.</p> <p>Results</p> <p>The values of the OGTT during the second trimester did not differ between the lifestyle intervention and close follow-up groups. In the lifestyle intervention group three women had GDM in the second trimester and respectively one woman in the close follow up group. Insulin therapy was not required in both groups. The intervention resulted in somewhat lower weight gain 11.4 ± 6.0 kg vs. 13.9 ± 5.1 kg, p = 0.062, adjusted by the prepregnancy weight.</p> <p>Conclusions</p> <p>Early intervention with an OGTT and simple lifestyle advice is feasible. A more intensive lifestyle intervention did not offer additional benefits with respect to glucose tolerance, although it tended to ameliorate the weight gain.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01130012">NCT01130012</a></p

    Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension

    Get PDF
    High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to ~192,000 individuals, and used ~155,063 samples for independent replication. We identified 31 novel blood pressure or hypertension associated genetic regions in the general population, including three rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5mmHg/allele) than common variants. Multiple rare, nonsense and missense variant associations were found in A2ML1 and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention

    Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.

    Get PDF
    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease

    Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension.

    Get PDF
    High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to 192,763 individuals and used ∼155,063 samples for independent replication. We identified 30 new blood pressure- or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.Wellcome Trust (068545/Z/02)This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.365
    corecore