13 research outputs found

    Endothelial Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Is Critical for Lymphatic Vascular Development and Function

    Get PDF
    The molecular mechanisms underlying lymphatic vascular development and function are not well understood. Recent studies have suggested a role for endothelial cell (EC) mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) in developmental angiogenesis and atherosclerosis. Here, we show that constitutive loss of EC Map4k4 in mice causes postnatal lethality due to chylothorax, suggesting that Map4k4 is required for normal lymphatic vascular function. Mice constitutively lacking EC Map4k4 displayed dilated lymphatic capillaries, insufficient lymphatic valves, and impaired lymphatic flow; furthermore, primary ECs derived from these animals displayed enhanced proliferation compared with controls. Yeast 2-hybrid analyses identified the Ras GTPase-activating protein Rasa1, a known regulator of lymphatic development and lymphatic endothelial cell fate, as a direct interacting partner for Map4k4. Map4k4 silencing in ECs enhanced basal Ras and extracellular signal-regulated kinase (Erk) activities, and primary ECs lacking Map4k4 displayed enhanced lymphatic EC marker expression. Taken together, these results reveal that EC Map4k4 is critical for lymphatic vascular development by regulating EC quiescence and lymphatic EC fate

    The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an at Motif-Driven Axis

    Get PDF
    We identified a dominant missense mutation in the SCN transcription factor Zfhx3, termed short circuit (Zfhx3Sci), which accelerates circadian locomotor rhythms in mice. ZFHX3 regulates transcription via direct interaction with predicted AT motifs in target genes. The mutant protein has a decreased ability to activate consensus AT motifs in vitro. Using RNA sequencing, we found minimal effects on core clock genes in Zfhx3Sci/+ SCN, whereas the expression of neuropeptides critical for SCN intercellular signaling was significantly disturbed. Moreover, mutant ZFHX3 had a decreased ability to activate AT motifs in the promoters of these neuropeptide genes. Lentiviral transduction of SCN slices showed that the ZFHX3-mediated activation of AT motifs is circadian, with decreased amplitude and robustness of these oscillations in Zfhx3Sci/+ SCN slices. In conclusion, by cloning Zfhx3Sci, we have uncovered a circadian transcriptional axis that determines the period and robustness of behavioral and SCN molecular rhythms

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Cholesterol-Independent SREBP-1 Maturation Is Linked to ARF1 Inactivation

    Get PDF
    Lipogenesis requires coordinated expression of genes for fatty acid, phospholipid, and triglyceride synthesis. Transcription factors, such as SREBP-1 (Sterol regulatory element binding protein), may be activated in response to feedback mechanisms linking gene activation to levels of metabolites in the pathways. SREBPs can be regulated in response to membrane cholesterol and we also found that low levels of phosphatidylcholine (a methylated phospholipid) led to SBP-1/SREBP-1 maturation in C. elegans or mammalian models. To identify additional regulatory components, we performed a targeted RNAi screen in C. elegans, finding that both lpin-1/Lipin 1 (which converts phosphatidic acid to diacylglycerol) and arf-1.2/ARF1 (a GTPase regulating Golgi function) were important for low-PC activation of SBP-1/SREBP-1. Mechanistically linking the major hits of our screen, we find that limiting PC synthesis or LPIN1 knockdown in mammalian cells reduces the levels of active GTP-bound ARF1. Thus, changes in distinct lipid ratios may converge on ARF1 to increase SBP-1/SREBP-1 activity

    Gld2-catalyzed 3′ monoadenylation of miRNAs in the hippocampus has no detectable effect on their stability or on animal behavior

    No full text
    Gld2, a noncanonical cytoplasmic poly(A) polymerase, interacts with the RNA binding protein CPEB1 to mediate polyadenylation-induced translation in dendrites of cultured hippocampal neurons. Depletion of Gld2 from the hippocampus leads to a deficit in long-term potentiation evoked by theta burst stimulation. At least in mouse liver and human primary fibroblasts, Gld2 also 3′ monoadenylates and thereby stabilizes specific miRNAs, which enhance mRNA translational silencing and eventual destruction. These results suggest that Gld2 would be likely to monoadenylate and stabilize miRNAs in the hippocampus, which would produce measurable changes in animal behavior. We now report that using Gld2 knockout mice, there are detectable alterations in specific miRNA monoadenylation in the hippocampus when compared to wild type, but that these modifications produce no detectable effect on miRNA stability. Moreover, we surprisingly find no overt change in animal behavior when comparing Gld2 knockout to wild-type mice. These data indicate that miRNA monoadenylation-mediated stability is cell type-specific and that monoadenylation has no measurable effect on higher cognitive function

    The mtDNA Mutation Spectrum of the Progeroid Polg Mutator Mouse Includes Abundant Control Region Multimers

    Get PDF
    Polg mtDNA mutator mice are important models for investigating the role of acquired mtDNA mutations in aging. Despite extensive study, there remains little consensus on either the etiology of the progeroid phenotype or the mtDNA mutation spectrum induced by disrupted polymerase-γ function. To investigate the latter, we have developed a novel, pragmatic approach we term “Mito-seq,” applying next-generation sequencing to enriched, native mtDNA. Regardless of detection parameters we observed an increase of at least two orders of magnitude in the number of mtDNA single nucleotide variants in Polg mutator mice compared to controls. We found no evidence for the accumulation of canonical mtDNA deletions but multimers of the mtDNA control region were identified in brain and heart. These control region multimers (CRMs) contained heterogeneous breakpoints and formed species that excluded the majority of mtDNA genes. CRMs demonstrate that polymerase-γ 3′-5′ exonuclease activity is required for preserving mtDNA integrity. ► Mito-Seq provides a sensitive, pragmatic approach to mtDNA mutation detection ► Polg D257A/D257A mice accumulate control region multimers (CRMS) distinct from mtDNA ► CRMs are associated with a mild mtDNA depletion and increased mtDNA gene expressio

    Fugu ESTs: New Resources for Transcription Analysis and Genome Annotation

    Get PDF
    The draft Fugu rubripes genome was released in 2002, at which time relatively few cDNAs were available to aid in the annotation of genes. The data presented here describe the sequencing and analysis of 24,398 expressed sequence tags (ESTs) generated from 15 different adult and juvenile Fugu tissues, 74% of which matched protein database entries. Analysis of the EST data compared with the Fugu genome data predicts that approximately 10,116 gene tags have been generated, covering almost one-third of Fugu predicted genes. This represents a remarkable economy of effort. Comparison with the Washington University zebrafish EST assemblies indicates strong conservation within fish species, but significant differences remain. This potentially represents divergence of sequence in the 5′ terminal exons and UTRs between these two fish species, although clearly, complete EST data sets are not available for either species. This project provides new Fugu resources, and the analysis adds significant weight to the argument that EST programs remain an essential resource for genome exploitation and annotation. This is particularly timely with the increasing availability of draft genome sequence from different organisms and the mounting emphasis on gene function and regulation
    corecore