15,862 research outputs found

    The quantum-mechanical basis of an extended Landau-Lifshitz-Gilbert equation for a current-carrying ferromagnetic wire

    Full text link
    An extended Landau-Lifshitz-Gilbert (LLG) equation is introduced to describe the dynamics of inhomogeneous magnetization in a current-carrying wire. The coefficients of all the terms in this equation are calculated quantum-mechanically for a simple model which includes impurity scattering. This is done by comparing the energies and lifetimes of a spin wave calculated from the LLG equation and from the explicit model. Two terms are of particular importance since they describe non-adiabatic spin-transfer torque and damping processes which do not rely on spin-orbit coupling. It is shown that these terms may have a significant influence on the velocity of a current-driven domain wall and they become dominant in the case of a narrow wall.Comment: 19 pages, 1 figur

    User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 1: General ADD code description

    Get PDF
    This User's Manual contains a complete description of the computer codes known as the AXISYMMETRIC DIFFUSER DUCT code or ADD code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The third volume contains a detailed description of the CODUCT code which generates coordinate systems for arbitrary axisymmetric ducts

    Spitzer observations of Abell 1763. III. The infrared luminosity function in different supercluster environments

    Get PDF
    Context. The study of galaxy luminosity functions (LFs) in different environments provides powerful constraints on the physics of galaxy evolution. The infrared (IR) LF is a particularly useful tool since it is directly related to the distribution of galaxy star-formation rates (SFRs). Aims. We aim to determine the galaxy IR LF as a function of the environment in a supercluster at redshift 0.23 to shed light on the processes driving galaxy evolution in and around clusters. Methods. We base our analysis on multi-wavelength data, which include optical, near-IR, and mid- to far-IR photometry, as well as redshifts from optical spectroscopy. We identify 467 supercluster members in a sample of 24-μm-selected galaxies, on the basis of their spectroscopic (153) and photometric (314) redshifts. IR luminosities and stellar masses are determined for supercluster members via spectral energy distribution fitting. Galaxies with active galactic nuclei are identified by a variety of methods and excluded from the sample. SFRs are obtained for the 432 remaining galaxies from their IR luminosities via the Kennicutt relation. Results. We determine the IR LF of the whole supercluster as well as the IR LFs of three different regions in the supercluster: the cluster core, a large-scale filament, and the cluster outskirts (excluding the filament). A comparison of the IR LFs of the three regions, normalized by the average number densities of r-band selected normal galaxies, shows that the filament (respectively, the core) contains the highest (respectively, the lowest) fraction of IR-emitting galaxies at all levels of IR luminosities, and the highest (respectively, the lowest) total SFR normalized by optical galaxy richness. Luminous IR galaxies (LIRGs) are almost absent in the core region. The relation between galaxy specific SFRs and stellar masses does not depend on the environment, and it indicates that most supercluster LIRGs are rather massive galaxies with relatively low specific SFRs. A comparison with previous IR LF determinations from the literature confirms that the mass-normalized total SFR in clusters increases with redshift, but more rapidly than previously suggested for redshifts ≲ 0.4. Conclusions. The IR LF shows an environmental dependence that is not simply related to the local galaxy density. The filament, an intermediate-density region in the A1763 supercluster, contains the highest fraction of IR-emitting galaxies. We interpret our findings within a possible scenario for the evolution of galaxies in and around clusters

    Universality of Mixed Action Extrapolation Formulae

    Get PDF
    Mixed action theories with chirally symmetric valence fermions exhibit very desirable features both at the level of the lattice calculations as well as in the construction and implementation of the low energy mixed action effective field theory. In this work we show that when such a mixed action effective field theory is projected onto the valence sector, both the Lagrangian and the extrapolation formulae become universal in form through next to leading order, for all variants of discretization methods used for the sea fermions. Our conclusion relies on the chiral nature of the valence quarks. The result implies that for all sea quark methods which are in the same universality class as QCD, the numerical values of the physical coefficients in the various mixed action chiral Lagrangians will be the same up to lattice spacing dependent corrections. This allows us to construct a prescription to determine the mixed action extrapolation formulae for a large class of hadronic correlation functions computed in partially quenched chiral perturbation theory at the one-loop level. For specific examples, we apply this prescription to the nucleon twist--2 matrix elements and the nucleon--nucleon system. In addition, we determine the mixed action extrapolation formula for the neutron EDM as this provides a nice example of a theta-dependent observable; these observables are exceptions to our prescription.Comment: 36 pages, appendix on twisted mass sea fermions added, expanded discussion of NLO operators, version published in JHEP; typographical errors corrected in Eqs. (68) and (69

    Collective excitations of Bose-Einstein condensed gases at finite temperatures

    Full text link
    We have applied the Popov version of the Hartree-Fock-Bogoliubov (HFB) approximation to calculate the finite-temperature excitation spectrum of a Bose-Einstein condensate (BEC) of 87^{87}Rb atoms. For lower values of the temperature, we find excellent agreement with recently-published experimental data for the JILA TOP trap. In contrast to recent comparison of the results of HFB--Popov theory with experimental condensate fractions and specific heats, there is disagreement of the theoretical and recent experimental results near the BEC phase transition temperature.Comment: 4 pages, Latex, with 4 figures. More info at http://amo.phy.gasou.edu/bec.htm
    corecore