General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

```
(NASA-CR-167C9C-VOL-2) ANSIYRICAI NCDELIN;
```



```
EASSASES. VCLUYL 2: USED'= *ANLNI (JAited
Iechncloqies resfurch: Ceater) 15& r (Jaited G3/Ju vincods
```

NASA CR-167990
R82-915362-40

Analytical Modeling of Operating Characteristics of Premixing-Prevaporizing Fuel-Air Mixing Passages

Vol. II User's Manual

Olof L. Anderson
Louis M. Chiappetta

David E. Edwards John B. McVey

February 1982

Prepared for
NASA Lewis Research Center
Under Contract NAS3-21269

- For sale by the National Technical Information Service. Springfield, Virginia 22151

Analytical Modeling of Operating Characteristics of Premixing-Prevaporizing Fuel-Air Mixing Passages

Volume II - User's Manual
table of contents
Page
1.0 SUMMARY 1-1
2.0 INTRODUCTION 2-1
3.0 GENERAL FEATURES 3-1
3.1 General Features of ADD Code 3-1
3.2 General Features of PTRAK Code 3-6
3.3 General Features of VAPDIF Code 3-8
4.0 OPERATION OF THE ADD CODE 4-1
4.1 Runstream for ADD Code. 4-1
4.2 Input Format for ADD Code 4-2
4.3 Output Description for ADD Code 4-22
4.4 Diagnostics for ADD Code. 4-24
4.5 Debug Options for ADD Code 4-33
4.6 Sample Input for ADD Code 4-34
5.0 OPERATION OF PTRAK CODE 5-1
5.1 Runstream for PTRAK Code. 5-1
5.2 Input Format for PTRAK Code 5-4
5.3 Output Descrip::ion for PTRAK Code 5-31
5.4 Diagnostics for PTRAK Code. 5-33
5.5 Debug Options for PTRAK Code. 5-34
5.6 Sample Input for PTRAK Code 5-35
6.0 OPERATION OF VAPDIF CODE 6-1
6.1 Runstream for VAPDIF Code 6-1
6.2 Input Format for VAPDIF Code. 6-5
6.3 Output Description for VAPDIF Code 6-15
6.4 Diagnostics for VAPDIF Code 6-16
6.5 Debug Options for VAPDIF Code 6-17
6.6 Sample Input for VAPDIF Code. 6-18

table of Contents (Cont'd)

Page
7.0 GLOBAL STRUCTURE 7-1
7.1 Interaction of ADD, PTRAK, VAPDIF Codes 7-1
7.2 Input/Output Data Files 7-3
8.0 DETAIL DESCRIPTION OF PTRAK CODE 8-1
8.1 Main Program/Flow Chart 8-1
8.2 Description of Modules by Major Task 8-3
8.3 List of Subroutines in PTRAK 8-8
8.4 List of CØMM $\varnothing \mathrm{N}$ BLØCK Variables 8-10
8.5 List of Local Variables 8-20
9.0 DETAIL DESCRIPTION OF VAPDIF CODE. 9-1
9.1 Main Program/Flow Chart 9-1
9.2 Description of Modules by Major Task 9-3
9.3 List of Subroutines in VAPDIF 9-6
9.4 List of C $\emptyset M M \emptyset \mathrm{~N}$ BLOCK Variables 9-8
9.5 List of Local Variables 9-12
10.0 REFERENCES 10-1

1.0 SUMMARY

A User's Manual describing the operation of three computer codes (ADD code, PTRAK code, and VAPDIF code) is presented herein. This manual is organized for the convenience of the user and contains sections describing the general features of the computer codes, the input/output formats, run streams, and sample input cases. It is presented in loose leaf format so that changes may be made easily as additional capabilities are added to the computer programs.

This User's Manual constitutes Volume II of the final report under NASA Corcract NAS3-21269.

2.0 INTRODUCTION

This User's Man al describes the computer codes used to calculate the operating characteristics of premixing-prevaporizing fuel/air mixing passages. The calculation procedure ctilizes three computer codes: the ADD code which calculates the axisymmetric or two-dimensional distributions of velocity, pressure, and temperature of the air flow; the PTRAK code which calculates the nonequilibrium heat-up, vaporization, and trajectories of the liquid fuel droplets in a three-dimensional flow field; and the VAPDIF code which calculates the diffusion of fuel vapor or critical autoignition species into a moving air stream. A detailed description of the analytical models and numerical procedures used in these computer codes is given in Volume I. The User's Manual, Volume, II, contains a description of the operation of the computer codes.

The ADD code was originally developed for NASA Lewis Research Center under Contract NAS3-15402 (Ref. 1). Important revisions, including the conformal mapping coordinate generator, were developed for the U. S. Army Air Mobility Research and Development Laboratory under Contract No. DAAJ02-73-C-0037 (Ref. 2). Further development and improvements to the ADD code were funded by United Technologies Research Center and Pratt \& Whitney Aircraft, Commercial Products Division. Additional improvements, including the incorporation of a two-equation model of turbulence into the ADD code, was sponsored by NASA Lewis Research Center under Contract NAS3-21853 (Ref. 3). A complete description of the ADD code is given in Ref. 4 together with a new coordinate generator sponsored under contract IEN3-235.

The original version of the PTRAK code was developed by United Technologies Research Center with its own funding. This version was based on a simple equilibrium vaporization model for single-component fuels. The nonequilibrium heat-up and vaporization model for a distillate fuel was developed under the current contract, NAS 3-21269.

The VAPDIF code was developed exclusively under the current contract although it is largely based on the Contractor's experience in developing three-dimensional parabolic forward marching computer codes for predicting the behavior of compressible flows.

This User's Manual is organized into several sections for the convenience of the computer code user. Section 3.0 contains a description of the general features of each of the computer codes to provide the user with an overview of the types of problems which can be solved. Sections $4.0,5.0$ and 6.0 contain descriptions of the operation of each of the computer codes. Sections 3.0 through 6.0 should provide the user with sufficient information of setup and solve typical problems within the scope of the computer codes. Sections $7.0,8.0,9.0$ present a more detailed description of the PTRAK and VAPDIF codes. A description of the ADD code is given in Ref. 4.

This User's Manual constitutes Volume II of the final report under Contract NAS3-21269.

3.0 GENERAL FEATURES

3.1 General Features of $A D D$ Code

Program Language

The Annular ifffuser Deck (ADD) code source program is written in FORTRAN V computer language for use on a UNIVAC 1100/81A computer. Some machine specific language, such as PARAMETER and INCLUDE FDRTRAN statements,is used. However, these statements may be replaced easily by equivalent code for use on other machines. Successful conversions of the code to both IBM and CDC computers have been made and these versions of the code are available. The ADD code makes use of a UNIVAC routine NTRAN which stores and retrieves large data blocks on disc files; however, the ADD code is organized so that NTRAN is easily replaced by the equivalent FORTRAN DEFINE FILE. Finally, it should be noted that the ADD code makes use of least squares spline fitting and smoothing subroutines provided by IMSL, Inc. which are available at all major computer centers.

Fluid Properties

The ADD code can treat any compressible fluid with constant thermodynamic proper ies for the gas constant R and the specific heats $C p$ and $C v$. The molecular viscosit, , which is temperature dependent, is estimated using Sutherland's law; the molecular thermal conductivity is calculated using a constant value for Prandtl number. The viscosity of the fluid at standard conditions and Prandtl number are input parameters. If these properties are not specified in the input data, the $A D D$ code uses the properties of air at standard conditions.

Types of Flow That May Be Treated

The ADD code may be used to treat subsonic compressible laminar or turbulent swirling flow in axisymmetric ducts or nonswirling flow in two-dimensional ducts. The duct may be annular or two-dimensional with both inner and outer walls; or, it may be an axisymmetric duct with only an outer wall. Subsonic flows have been treated successfully up to the sonic line. The mixing of hot and cold streams has also been analyzed using the $A D D$ code. The code is not applicable to flows contrining regions of separation or reverse flow.

Duct Geometry Option (IØPT3)

The flow through axisymmetric or two-dimensional ducts may be calculated provided that the principal flow direction is axial; however, the duct cannot contain a right-angle turn. The ADD code is not applicable to flows in ducts with discontinuities in flow area that produce regions of flow separation.

For convenience, provision is made in the code to analyze flows in straight annular ducts ($1 \emptyset \mathrm{PT} 3=1$) or in straight wall, annular diffusers ($1 \emptyset \mathrm{PT} 3=3$) using only a few input parameters. For ducts of arbitrary shape ($I \emptyset P T 3=2$), the coordinates (radii) of the inner and outer walls are specified at JLPTS equally-spaced axial stations. To assure that the curve representing the duct contour has continuous first and second derivatives, a least-squares spline fitting, smoothing and interpolation procedure is included in the code. This procedure is used whe ever the number of streamwise stations (JL) is not equal to JLPTS.

The specification of the duct geometry must include a straight, annular inlet section whose length is at least equal to its height. Two-dimensional ducts are treated as annular ducts in which the height of the duct is small compared to the radius of the duct. Numerical experiments have shown that, if the height of the duct is less than $1 / 100$ of the duct radius, the flow is essentially two-dimensional to an accuracy of three decimal places.

Inlet Flow Options (IøPT1)

Any arbitrary inlet flow conditions may be specified which are consistent with the equations of motion and the turbulence model. Two types of input data are required: (1) specificetion of the inviscid free stream and core flow conditions, and (2) specification of the laminar or turbulent boundary layer flow parameters. Uith $1 \emptyset \mathrm{PTl}=3,4,9$, the flow is assumed to be turbulent and with $1 \emptyset \mathrm{PTl}=7,8$, the flow is assumed to be larinar. W ch $I \emptyset \mathrm{PTl}=3$ or 7 , the core flow is calculated assuming that the stagnation pressure and stagnation temperature are constant across the duct. The input Mach number and swirl angle determine the velocities and weight flow, and the static pressure is determined by solving the conservation equation for radial momentum. When IOPTl=4 or 8 , the inlet core flow is determined by specifying KLL data points for fractional distance Y, stagnation pressure $P_{T}(Y)$, static pressure $\mathrm{P}(\mathrm{Y})$, swirl angle $\alpha(\mathrm{Y})$, and stagnation temperature $\mathrm{T}_{\mathrm{T}}(\mathrm{Y})$. For $\mathrm{I} \emptyset \mathrm{PTl}=9$, the core flow is determined by specifying KLL data points for fractional distance Y, streamwise veiocity $\mathrm{U}_{\mathrm{S}}(\mathrm{Y})$, stagnation pressure $\mathrm{P}_{\mathrm{T}}(\mathrm{Y})$, swirl velocity $\mathrm{U}_{\phi}(\mathrm{Y})$, and stagnation temperature $\mathrm{T}_{\mathrm{T}}(\mathrm{Y})$. Isentropic flow relations and radial momentum conservation equations are used to determine the remaining variables. In addition, when $1 \emptyset \mathrm{PTl}=4,8$ or 9 , the corresponding exit flow data must be provided. These data are not required by the calculation procedure but are used only by plotting routines which can be used to compare calculated and measured exit flow profiles. If the exit plane data are not available, the inlet plane data may be repeated.

The boundary layer velocity and temperature profiles are corstructed from known analytic solutions using the boundary layer displacement thickness (δ^{*}) and a power law ($1 / \mathrm{n}$) velocity profile. For laminar boundary layers ($10 \mathrm{PTl}=7$, 8) a Blasius profile is assumed. For turbulent flows (IOPT1=3, 4, 9), Cole's boundary layer profile is used with the shape parameter determined from $1 / n$.

In many flow situations, it is often more convenient to specify the weight flow rather than velocity or Mach number. For these situations, the user may specify the weight flow when using $I \emptyset P T l=4$ or 8 . The static pressure profile is automatically adjusted to obtain the required weight flow with the other input variables held fixed.

It should be noted that the initial plane conditions must satisfy the laws of motion and be compatible with the turbulence model. Therefore, the ADD code makes many checks on the input data to assure satisfactory starting conditions. As an example, the initial plane data are checked to determine if the radial momentum conservation equation is satisfied. If it is not satisfied, the input static pressure profile is replaced by the static pressure profile calculated from the radial momentum equation and a DIAGNøSTIC message is printed. The weight flow calculated from the initial plane data is checked to see if it is greater than the choked-flow value. If it is greater, the calculation stops anc the value of the choked weight flow is printed out. Checks are made to assure that the boundary layer profile can be matched to the free stream core flow; the necessary adjustments are made automatically and the calculation continues. In all cases where adjustments to the input data are made and the calculation continues, a DIAGNФSTIC message is printed. When no adjustment is possible or when the flow situation is physically impossible, the calculation stops and the user is notified with a DIAGN \varnothing STIC missage. A list of these DIAGNØSTIC messages is given in Section 4.4

Grid Selection

The user may determine the calculation grid using ir.put parameters or the grid may be determined automatically. In either case the user must specify the number of streammise stations (JL) and the number of streamlines (KL). Experience has shown that a 50×50 mesh is suitable for most problems. Default options exist for both the distribution of mesh points in the cross flow direction as specified by the mesh distortion parameters DDS and the streamwise step size parameter KDS. In selecting the mesh distortion parameters DDS, numerical accuracy requires that a sufficient number of mesi points exist in the turbulent sublayer. In practice, the first mesh point from the wall should be at $\mathrm{Y}^{+}=1.0$ and at least 20 mesh points should be in the boundary layer. These criteria depend on both the flow Reynolds number anc wall friction coefficient. Therefore, if DDS is not specified in the input data, a value for DDS is calculated using an algorithm which produces good results for most cases. The value for the streamwise step size parameter KDS depends on the boundary layer thickness and rate of growth of the boundary layer. If KDS is not specified, the code selects a value for KDS between each streamwise station using an algorithm which produces satisfactorily results for most cases.

Print Options (IめPT4)
The frequency and quantity of output are controlled by the print option IØPT4. If IOPT4 > 0 , the output consists of the mean flow variables including streamwise
velocity U_{s}, tangential velocity U_{ϕ}, static pressure P, stagnation pressure P_{T}, atagnation temperature T_{T}, and Mach number M at each streamwise station for JL stations; this printout occurs at every IØPT4th station. If 10PT4 ≤-1, additional information is printed including the effective turbulent viscosity and thermal conductivity, the boundary layer solution in universal coordinates $\mathrm{U}^{+}\left(\mathrm{Y}^{+}\right)$, and the turbulent kinetic energy distribution; this information is printed every I円PT4th station.

Diagnostics

The ADD code makes numerous checks during the progress of the calculation. If the program is able to remedy a detected problem, a DIAGNDSTIC is printed and the calculation continues. If a fatal error is detected, the calculation stops and a DIAGNøSTIC notifies the user about the nature and location of the error. A complete list of DIAGNØSTICS is given in Section 4.4.

Calculation Option (IめPT9)

The calculation c the cnordinate system may be stored on a data file and retrieved for use in subsequent cases. If $1 \emptyset$ PT $9=1$, both the coordinates and the viscous flowfield are calculated. If $1 \emptyset \mathrm{PT} 9=2$, the coordinate system is calculated and stored on file NINE and the calculation stops. If IøPT9=3, the coordinates stored on file NINE are recalled and the viscous flowfield is calculated. This feature is particularly useful when the user wishes to calculate several flows using the same duct geometry.

Data Files

Since three separate computer codes are used in the analysis, data is passed from one computer code to the other through data files. The ADD iode generates the coordinate system and stores the results on file NINE. The ADD code also generates the viscous flowfield solution and stores the results on file EIGHT. Both the PTRACK and VAPDIF codes require the data stored on files EIGHT and NINE. The PTRAK code calculates the rate of evaporation of fuel droplets for use as the source terms for the solution of the diffusion equation by the VAPDIF code. These source terms are stored on file SEVENTEEN. The VAPDIF code uses the data stored on dii three files. It is recommended that these files be registered and catalogued files so that the data may be stored permanently over a period of several weeks. Proper use of these files allows the user great flexibility in solving problems.

tart/Stop Options

A flow calculation may be started at coordinate station $J=1 \emptyset$ PTIS and it may be terminated at coordinate system station $\mathrm{J}=1 \emptyset \mathrm{PT} 16$. If $1 \emptyset \mathrm{PT} 15$ is not specified, it is assigned a value $1 \emptyset \mathrm{PT} 15=1$; if $1 \emptyset \mathrm{PTl} 6$ is not specified, it is assigned a value $1 \emptyset \mathrm{PT} 16=\mathrm{JL}$. The calculation of the flowfield may be continued (or restarted) at the JM coordinate station by specifying $1 \phi \mathrm{PT} 17=\mathrm{JM}$.

Turbulence Models (IØPT12)

The ADD code is provided with four turbulence models described in Volume 1 . For $1 \emptyset \mathrm{PT} 12=0,1,2$ algebraic turbulence models are used based on Prandtl's mixing length theory. For IøPT12=3, a two equation model of turbulence is used. Option I $\emptyset \mathrm{PT} 12=0$ uses a turbulence model which is well established for equilibrium turbulent flowfields and is therefore recommended for all calculations. The other options ($\mathrm{I} \emptyset \mathrm{PT} 12=1,2,3$) are operation but these models have been applied to only a few flowfield situations; the use of these models is not recommended at the present time.

Blade Force Options (I $\emptyset \mathrm{PT} 2$) (I $\emptyset \mathrm{PT} 5$) (I $\emptyset \mathrm{PT} 10$)
Struts, inlet guide vanes, stators, and rotors are modeled in the ADD code as a-priori body forces. Three options exist in the code for calculating these forces. If measurements of stagnation pressure P_{T}, swirl angle α, and stagnation temperature T_{T} are available, the blade forces can be calculated from blade element theory by setting $1 \emptyset$ PT2=1. If $1 \not \subset \mathrm{PT} 5=2$, the program uses the inlet/exit flow data for $I \emptyset \mathrm{PT} 1=4$. If $I \emptyset \mathrm{PT} 5=1$, separate data must be read for the blade force calculation. If $I \emptyset P T 2=3$, the blade force is calculated from the flow conditions and blade geometry using blade element thecry and empirical cascade correlations. If $I \emptyset P T 2=4$, the blade force is calculated using the distributions of exit air swirl angle $\alpha_{2}(Y)$ and loss coefficient $Z_{B}(Y)$.
$I \emptyset \mathrm{PT} 10$ determines whether the blade is stationary ($1 \emptyset \mathrm{PT} 10=1$, stator) or rotating ($1 \emptyset$ PT10 $=2$, rotor).

Global Iteration (I@PT14)
The ADD code can treat small regions of separated and reattached flow (a separation bubble) using a global iteration procedure. For these cases, KDS must be specified. The first iteration is made with IøPT14=0. The second and successive iterations are made by repeating the calculation with $1 \emptyset \mathrm{PT14}=1$. As successive passes (iterations) are made, the solution stored on file EIGHT is updated.

3.2 General Features of PTRAK Code

Program Language

The Particle Tracking (PTRAK) code is written in the FøRTRAN V computer langurge for use on a UNIVAC $1100 / 81 \mathrm{~A}$ computer. Some machine specific language, such as PARAMETER and INCLUDE F \ddagger RTRAN statements, is used. However, these statements may be replaced easily by equivalent code for use on other machines. The PTRAK code makes use of a UNIVAC routine NTRAN which stores and retrieves large data blocks on disc files; the PTRAK code is designed so that NTRAN is easily replaced with the equivalent FøRTRAN DEFINE FILE statements by modifying only one subroutine.

Grid Selection

The PTRAK axial and radial coordinates and computational grid are calculated by the ADD code and stored in file NINE. In addition, the PTRAK code uses the viscous flowfield solution generated by the ADD code and stored in file EIGHT. All information required by the PTRAK code, such as number of mesh points (JL x KL), the starting station (JFIRST), and the termination station (JLAST) are also stored on coordinate file NINE. Information on the third (ϕ) coordinate must be input to the PTRAK code. This information consists of the number of azimuthal grid points (LPHI ≤ 50), and the azimuthal step size ($\Delta \phi$). Finally the number of axial steps per ADD code streamwise station (KDS) mast be specifier. The appropriate value of KDS is determined primarily by how sapidly both the droplet trajectories and velocities are changing. At the present time, no algorithm to alter the axial step-size automatically exists in the PTRAK code so that KDS must be set to the largest value (smallest step size) required for an accurate solution.

Boundary Conditions (1фPT3)
Two types of boundary conditions are possible: a wall boundary condition or a periodic boundary condition. At a solid wall, a droplet may either strike the wall and remain thereon or it may rebound elastically. Dropiets remaining on a wall may undergo additional evaporation. Droplet-solid wall interaction boundary conditions include: elastic rebound with no vaporization (IøPT3=0, 1); elastic rebound with vaporization ($1 \varnothing \mathrm{PT} 3=2,3$). A periodic boundary condition is avallable for swirling flows in annular ducts. Thus if $1 \emptyset \mathrm{PT} 3=1$ or 3 , the duct is assumed to have four rectangular solid wais. If $1 \emptyset \mathrm{PT} 3=0$ or 2 , the duct is assumed to be an annular duct defined by solid walls and two permeable side-walls with periodic boundary conditions such that, if a droplet exits through one side-wall, an identical droplet will enter through the opposite side-wall; therefore, only an annular segment of the flow needs to be analyzed.

Location of Fuel Iniectors

Each of several fuel injectors may be placed arbitrarily in the duct at any axipl station by specifyiying ts coordinates (r, z, ϕ). The calculation will start at the first computed viscous flowfield station generated by the ADD code. Integration of the droplet equations will not start until the axial station is reached at which the first fuel injcctor is located; it will continue until all of the fuel droplets have evaporated.

Initial Droplet Condit_, ns

The inatial droplet conditions for each class of droplets consist of its three initf.al velocity components, diamete , and temperature; up to 1250 droplet classes may be input. The PTRAK code uses a forward marching calculation procedure so that all droplet classes must have an initial velocity component in the downstream direction. Injection angles are limited, therefore, to values less than 85 deg relative to the axial direction.

Compositon of Fuel Droplets

Droplets of either single component or multicomponent (distillate) fuels may be considered by specifying the appropriate thermodynamic and transport properties described in Section 4.4 of Volume I. For droplets of distillate fuel, it is necessary to provide both a distillation curve and a Cox chart.

Droplet/Droplet Collisions (I申PT1, I申PT2)

Models for droplet shattering (controlled by I $\emptyset \mathrm{PT}$) and droplet-droplet collisions and coalescence (controlled by (IØPT2) are available in the program.

Autoignitior Model (IØPT7)

Source terms for the rate of production per unit volume of the critical species for autoignition can be calculated for use subeequently in the VAPDIF code.

3.3 General Featuree of VAPDIF Code

Program Language

The Vapor Diffusion (VAPDIF) code is written in the FDRTRAN V computer language for use on a UNIVAC $1100 / 81 \mathrm{~A}$ computer. Some machine specific language, such as PARAMETER and INCLUDE FøRTRAN statements, is used; however these statements may be replaced easily by the equivalent code for use on other machines. The PTRAK code makes use of a UNIVAC routine NTRAN which stores and retrieves large data blocks on disc files; the PTRAK code is designed so that NTRAN is easily replaced with the equivalent FøRTRAN DEFINE FILE statements by modifying only one subroutine.

Grid Selection

The VAPDIF code uses the coordinates and computational grid generated by the ADD code and stored in file NINE. In addition it uses the viscous flowfield eolution generated by the ADD code and stored infile EICHT together with the vapor and critical species source distributions and boundary conditions generated by the PTRAK code and stored in various files. All information required to locate data at corresponding grid points is stored in these files.

Boundary Conditions

The boundary conditions are specified completely by the ADD code and PTRAK code data files.

Initial Conditions

It is assumed that the initial concentration of fuel vapor is zero. However, the user may specify a constant mass fraction CZERO (card 4) which is discributed uniformly over the entire initial plane.

Restart Option

The calculation may be started, terminated, or restarted at any axial station in the duct. These options are controlled by the input paraneters IADD, IBEGIN, and IEND on input card 2. The variable IADD is equal to JFIRST from the ADD code calculation. IBEGIN is the first calculation station, not including the initial plane, for the VAPDIF code. Normally, the calculation is started with IBEGIN equal to IADD +1 . IEND is the last calculation station in terms of the ADD code coordinates. If IBEGIN $>\operatorname{IADD}+1$, the code assumes that the solution has been calculated and stored in file ELEVEN for station IADD up to station IBEGIN-1. Thus by specifying IBEGIN and IEND the calculation can be started and stopped at any point.

Print Options (IPRNTX)

Since the VAPDIF code solves a three-dimensional problem, very large amounts of data are necessary to describe completely the solution. For a maximum of a 100 streamwise stations, 100 normal (radial), and 50 tangential stations, there are 5×10^{5} grid points. At each grid point the concentration (C), the three coordinates (n, s, ϕ), the three metric coefficients, the three physical distances, and the three cartesian coordinates must be specified. Therefore the total number of data points is 6.5×10^{6}. Print options (card 3) may be used to limit the data printout. In all cases, however, a summary table is given which includes the fuel vapor flo iate, fuel air ratio, and mass flow weighted average mass fraction of fuel as a funcion of axial distance.

Autoignition Model

Subsequent to the calculation of the three-dimensional fuel vapor distribution, the Vapor Diffusion code can be used to determine the distribution of critical species and thereby estimate whether autoignition of the fuel vapor-air mixture will occur.

4.0 OPERATION OF THE ADD CODE

4.1 Runstream for ADD Code

It is assumed that:

1. The program will be executed in TPF\$;
2. The executable (absolute) element is MAPADD;
3. A catalogued file exists for storing the viscous flowfield (and is called EIGHT in this example);
4. A catalogued file exists for storing the flowfield geometry (and is called NINE in this example).

Then the following runstream is sufficient to execute the $A D D$ code.

```
@ASG,AX EIGHT.,D/O/TRK/300000
@ASG,AX NINE.,D/O/TRK/250000
@USE 8,EIGHT
@USE 9,NINE
@ASG,T 10,D/O/TRK/6000
@ASG,T 11,D/0/TRK/50000
@ASG,T 14,D/O/TRK/60000
@ASG,T 22,D/O/TRK/300000
@XQT MAPADD
(INPUT CARDS)
@FREE 8
@FREE 9
@FREE 10
@FREE 11
@FREE 14
@FREE }2
```


4.2 Input Format for ADD Code

The input format for the ADD code is described on the input data coding furms which follow. These coding forms are organized with one form per input data card. Each form contains the names of the variables, the format, and a description of the data. The input option card controls the data that must be read. Since not all cards are read, the user should make certain that the input data agrees with the input options.

In general the input data is read as follows:

Card 1 Title Card

Card 2 Option Card

Card 3 Mesh Parameter Card

Card 4 Duct Geometry Card

+ data as required by IØPT3

Card 5 Inlet Flow Card

+ data as required by IØPT1

Card 6 Force Data Card (If I $\emptyset \mathrm{PT} 2 \neq 0$)

+ data as required by IøPT2, I $\emptyset \mathrm{PT} 5, ~ I \emptyset \mathrm{PT} 10$

Card 8 Slot Flow Data Card (option not available)
(1,
The input option parameters IøTP1 through IøPT17 determine program flow options to be executed by the
$A D D$ code and determine the input data cards to be read. These options are described on the following pages.
The input option parameters IDBG1 through IDBG17 are debug options not normally used. These options are described in Sec. 4.5

IØPT3 (GDUCT Option) Information follows Card 2
$=1$ Calculate a straight, annular duct.
$=2$ Read co-ordinates of duct.
$=3$ Calculate a straight-walled, annular diffuser.
IøPT4 (PRINT Option)
Print solution every $\mathrm{I} \emptyset \mathrm{PT} 4$ station. For example, if $1 \emptyset \mathrm{PT} 4=3$, every third station will be printed. If $1 \emptyset \mathrm{PT} 4 \leq-1$, the code provides an extended printout; this extended printout includes information about the boundary layer profiles and the turbulence model.

IøPT5 (STRUT INPUT Option)
Strut input data (if $1 \emptyset P T 2=1$) used to calculate strut forces from experimental data measured upstream and downstream of strut.
$=1$ Read in required profiles.
$=2$ The upstream and downstream strut data cards are identical to the inlet and exit flow cards and are not read.
(STRUT Thickness Effects)
0 Include strut iorces plus thickness effects
1 Include strut thickness effects only.
I \emptyset PT7 Not Used

IøPT8 (PLOT Option)
$=0$ No plots requested.
$=1$ Make CALCøMP plots (not available at LeRC)
(COORDINATE Option)
$=0$ Make an approximate calculation for both streamlines and potential lines--do not save flowfield on disk. Used only for $1 \varnothing \mathrm{PT} 3=1$.
$=1$ Make exact calculation of streamlines and potential lines-store results on logical unit 9 and complete viscous flow calculation.
$=2$ Same as 1 but terminate calculation after coordinate calculations are completed.
= 3 Read geometry from logical unit 9 and use in viscous flow calculation.

IøPT10 (RøT@R Option)
$=0$ No rotors or stators.
= 1 Stators are present.
$=2$ Rotors are present.

IØPT11 (FLØW Option)
$=0$ Internal flow.
$=1$ External flow.
$1 \emptyset$ PT12 (TURBULENCE Option)
$=0$ Use two-layer turbulence model.
$=1$ Use two-layer turbulence model with low Reynolds number correction.
= 2 Use two-layer turbulence model with otreamline curvature correction.
$=3$ Use two equation turbulence model (applicable to flows in annular diffusers only; i.e., diffusers wich both inner and outer walls).

IøPT13 (SLDT Option) (Not available)
$=0$ No slot cooling.
$=1$ Slot cooling.
1ØPT14 (GLøBAL Option)
$=0$ Global iterations not used.
= 1 Global iterations used - backward differencing for streamwise velocity derivatives in vicinity of separation.

IøPT15 (JFIRST Option)
Start flow calculation at station IøPT15--if omitted, IøPT15 $=1$.
IøPT16 (JLAST Option)
Stop calculation at station IضPT16--if omitted, IøPT16 $=\mathrm{JL}$.
IØPT17 (RESTART Option)
Restart a previously generated case at station IøPT17.
NOTE: I $\emptyset P T 9$ must be equal to 3 and KDS must be the same value as used in previous run (see Card 3).
Card 3 MESH PARAMETER CARD FøRMAT (E10.5,6I3)
 ORIGINA: PAGE IS
OF POOR QUALITY
Mesh Distortion Parameter in normal (radial) direction. The parameter will determine Mosh Distortion Parameter closely grid points are spaced near the wall. If DDS is input as 0.0 , the program will determine an appropriate value. Number of streamlines $(3 \leq \mathrm{KL} \leq 100)$; for most cases, set $\mathrm{KL}=50$.
Number of streamwise stations $(3 \leq \mathrm{JL} \leq 100)$; for most cases set JL=50
Number of steps per station; if $\mathrm{KDS}=0$, the program will determine the smallest
KDS value that satisfies the criteria for numerical stability. Number of input streamlines for inlet flow data (IøPT1=4,8,9). Program will interpolate input data on all KL streamlines.
Not used.
If JLPTS $\neq \mathrm{JL}$ input
Number of duct geometry input points for
data points will be smoothed and interpolated at calculation grid points.
合
KL
JL
KDS
KLL

JLAST
JLPTS

AJD CODE INPUT

[\cdots

Givibut Brate is OF rOOR QUALITY

Card 4 DUCT GEOMETRY CARD FøRMAT(8E10.5) $\begin{aligned} \text { Card } 4 & \text { DUCT GEOMETRY CARD FøRMAT(8E10.5) } \\ & \text { I } \emptyset \mathrm{PT} 3=2 \text { READ DUCT COORDINATES }\end{aligned}$
ADD CODE INPUT
ADD CODE INPUT
Cards 4 a DUCT 0.D. RADIUS CARDS FGRMAT (8Fi0.5)

ORIGINAL PREX is OF POOR QUALITY
Tip (0.D.) duct radius (cm)
at JLPTS equally spaced axia
(8 entries per card)
RADII (J)

:ODE INPUT

ADD CODE INPUT

Cards 5a INLET/EXIT FLOW DISTRIBUTION FøRMAT(5E10.5)
IøPT1 $=42 *$ KLL CARDS FOLIOWING CARD 5.

淂

ORIGINAL FAC
OF POOR QUALITY

$$
\begin{aligned}
& \text { Normalized distance across duct } \mathrm{Y}=\left(\mathrm{r}-\mathrm{r}_{\mathrm{H}}\right) /\left(\mathrm{r}_{\mathrm{T}}-\mathrm{r}_{\mathrm{H}}\right), 0 \leq \mathrm{Y} \leq 1 \text { where } \\
& \mathrm{r}_{\mathrm{H}} \text { is hub radius at inlet (exit) station and } \mathrm{r}_{\mathrm{T}} \text { is tip radius at inlet (exit) } \\
& \text { station. } \\
& \text { Stagnation pressure (atm) } \\
& \text { Static pressure (atm) } \\
& \text { Swirl angle (deg.) } \\
& \text { Stagnation temperature (}{ }^{\circ} \mathrm{K} \text {) } \\
& \text { 1. Cards } \text { through KLL are inlet conditions. } \\
& \text { Cards KLL+1 through } 2 \text { *kLL are exit conditions. } \\
& \text { 2. Load cards with increasing } \mathrm{Y} \text { including } \mathrm{Y}=0.0 \text { and } \mathrm{Y}=1.0 \text {. } \\
& \text { 3. Program uses exit flow data only for plotting. If exit flow data are } \\
& \text { not available, use inlet flow data. }
\end{aligned}
$$

Y
inlet/EXIT FLOW DISTRIBUTION FøRMAT(5E10.5) IøPT1 $=92$ *KLL CARDS FOLLOWING CARD 5.

$$
\begin{aligned}
& \text { Strealawise velocity (m/sec) } \\
& \text { Static pressure (atm) } \\
& \text { Swirl velocity (m/sec) } \\
& \text { Stagnation temperature (}{ }^{\circ} \mathrm{K} \text {) } \\
& \text { 1. Cards } 1 \text { through KLL are } \\
& \text { Cards KLL+1 through } 2 * \mathrm{KL}
\end{aligned}
$$

available use inlet flow data.

1. Cards 1 through KLL are inlet conditions. 1. Cards 1 through KLL are inlet conditions. Load cards with increasing Y including $Y=0.0$ 2. Load cards with increasing Y including $Y=0.0$ and $Y=1.0$
2. Program uses exit flow data only for plotting. If not Streanwise velocity ($\mathrm{m} / \mathrm{sec}$) $\quad\left(\mathrm{r}-\mathrm{r}_{\mathrm{H}}\right) /\left(\mathrm{r}_{\mathrm{T}}{ }^{-r} \mathrm{r}\right), 0.0 \mathrm{Y}^{\mathrm{Y}}$

$$
\dot{\sim} \dot{m}
$$

- $\dot{\sim}$

Normalized distance across duct $Y=\left(r-r_{H}\right) /\left(r_{T}-r_{H}\right), 0.0 \leq Y \leq 1.0$ Stagnation temperature (${ }^{\circ} \mathrm{K}$)

$$
0-2-0 .+2
$$ available use inlet flow data. m NOTE:

ADD CODE INPUT
Cards 5b

CRECNR S. A*:
OF POOR QUURT

ADD CODE INPUT
ORIGINAR PSt OF POOR C..nsiv
$0 \leq \mathrm{XK}(\mathrm{I}) \leq 1.0 \quad \mathrm{I}=1, \mathrm{KBLADE}$
XK(I) Fractional distance along chord line
from blade leading

R82-915362-40

ORIGint 4 - $\because 6$.
OF POOR QUAL.

ADD CODE INPUT
Card 7 REFERENCE CONDITIONS FØRMAT(2E10.5,5F6.0,3E10.5)
Card 7 REFERENCE CONDITIONS FøRMAT(2E10.5,5F6.0,3E10.5)
Card 7 REFERENCE CONDITIONS FøRMAT(2E10.5,5F6.0,3E10.5)

4.3 Ou:put Description for ADD Code

The output on each page from the ADD code is largely self-explanatory, A general description of the output by page is given below.

Title Page

This page presents a list of modifications, dates, and report numbers for all changes to the ADD code.

Input Data Page

This page presents all input data including all options and default input values.

Inlet Flow Pages

If $I \emptyset P T 1=4,8$ or 9 , the input data is checked for self-consistency. Both input and derived results are printed on these pages.

Performance Page

Mean and average quantities of the inlet flow which are frequently used to measure or normalize duct performance are printed on this page.

Wall Conditions Page

The coordinates of the hub and tip wall, mass flow bleed, and wall temperature are printed. For adiabatic walls, the wall temperature is not known before the calculation and appears as $T_{W}=0$ on the printout.

Wall Geometry Page

This page prints the wall coordinates, wall curvature, and arc length along the walls.

Gap Average Inviscid Flow Pages

The ADD code calculates the inviscid flow field and prints the solution for each streamwise station as determined by the print option IØPT4.

Gap Average Viscous Flow Pages
The ADD code calculates the viscous flow field solution and prints the solution for each streamwise station as determined by the print option IØPT4. The solution appearing on these pages is stored on file EIGHT.

Boundary Layer Coordinate Pages

When IDPT4 < 0 , the velocity and shear stress distribution in universal coordinates $U^{+}\left(Y^{+}\right)$and $\tau^{+}\left(Y^{+}\right)$and the effective turbulent viscosity and thermal conductivity distributions predicted by the turbulence model are printed.

Turbulence Properties Pages

When IØPT4 < 0, the calculated distribution of turbulence kinetic energy, Rey:oolds stress, Reynolds number of turbulence, and turbulent Richardson number are printed.

Mass Flow Average Page

At the completion of the calculation, a flow summary is given which includes mass flow weighted averages of several variables, pressure recovery coefficient, and pressure loss coefficient.

Wall Surface Conditions Page
This page presents a summary of wall heat transfer conditions including wall friction coefficient, wall temperature, integrated wall area, and integrated heat transfer through the wall.

Wall Radiation Summary Page
This page presents a summary of data required for wall radiation calculations. This output is not applicable for cases in which the ADD code is applied to premixing fuel preparation passages.

Boundary Layer Parameter Pages (Hub and Tip)
These pages summarize the growth of the boundary layer in terms of displacement thickness, momentum thickness, and shape factor.

4.4 Diagnostics for ADD Code

Numerous checks are made during the course of the calculation. If a minor error c.curs, a DIAGNDSTIC message is printed and the calculation continues. If a fatal error occurs, a DIAGNDSTIC message is printed and the calculation stops. A description of these DIAGNØSTICS is given in this section. The DIAGNØSTIC message is always of the form:
DIAGNOSTIC NO. XX FOR ANNULAR DIFFUSER DECK
where $x x$ refers to one of the errors listed. It should be noted that numerical values printed with the DIAGNøSTIC message will be in dimensionless form or in English units.

1) IØPT3 OUTSIDE RANGE OF ALLOWABLE DUCT OPTIONS

This error is detected in Subroutine ALTMN. The input option must be between $1 \leq 1 \emptyset \mathrm{PT} 3 \leq 6$.
2) No solution exists in AMFOR

This error is detected in Subroutine AMFOR. This subroutine solves the Mach number function

$$
N=M\left(1+\frac{\gamma-1}{2}\right)^{\frac{1}{2}} /\left(1+\gamma M^{2}\right)
$$

for M given N. The function has a maximum at $M=1$. Hence

$$
N(1)=[2(1+\gamma)]^{-}
$$

Solutions do not exit for values of $\mathrm{N}>\mathrm{N}(1)$.
3) MASS FLOW EXCEEDS THE MAXIMUM MASS FLOW POSSIBLE

This error is detected in Subroutine AMINLT which solves the Mach number function

$$
N=M\left(1+\frac{\gamma-1}{2} M^{2}\right)^{-\frac{\gamma+1}{2(\gamma-1)}}
$$

for M given N. This function has a maximum for $M=1$ given by

$$
N(1)=\left(\frac{\gamma+1}{2}\right) \cdot \frac{\gamma+1}{2(\gamma-1)}
$$

corresponding to choked flow.
4) ISHAPE AND IøPT2 ARE NOT CONSISTENT

This error is detected in subroutine CASC. For blade and strut calculations use only I \emptyset PT2=3 with any ISHAPE, where

$$
3 \leq \text { ISHAPE } \leq 6
$$

Otherwise, the calculation will stop.
5) FOR BEST RESULTS ADD A STRAIGHT ANNULAR CHANNEL INLET

This error is detected in Subroutine C $C \emptyset R 1$. In the construction of the duct coordinates, it is assumed that the inlet has no curvature as shown in the figure below. This is not a fatal error because small inlet curvatures may be tolerated. For best results add a straight annular section to the inlet as shown by the dotted lines in the figure.

z

Addition of Straight Annular Channel Inlet
6) PROGRAM ASSUMES INLET FLOW HAS CURVATURE

This error is detected in Subroutine C $\emptyset \emptyset$ R1. Same as diagnostic 5.
7) Wall curvature is too large at station X.

This error is detected in Subroutine CøøR1 usuaily if the duct has a discontinuous change in wall curvature such as shown in the figure below.

Discontinuous Change in Wall Curvature
8) Not Used
9) GREATER THAN 1. PERCENT NORMAL PRESSURE GRADIENT ERROR RECALCULATE STATIC, PRESSURE

This error is detected in Subroutine ERPIN. This subroutine integrates the radial momentum equilibrium equation.

$$
P_{Z}-F_{H}=\gamma M_{r}^{2} \int_{0}^{2}\left|-\frac{p}{V} \frac{\partial V}{\partial n} U_{s}^{2}+\frac{p}{R} \frac{\partial F}{\partial n} U_{\phi}^{2}\right| \frac{d \eta}{X v}
$$

and compares $\left(\mathrm{P}_{\mathrm{T}}-\mathrm{F}_{\mathrm{H}}\right)$ to that computed for the input inlet flow $\left(\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{H}}\right.$) . If the error given by

$$
E=\left|:-\frac{P_{T}-P_{H}}{\left(F_{T}-F_{H_{1}}\right.}\right|
$$

is greater than 0.01 , the input initial static pressure distribution is replaced by the above pressure equation and the inlet flow is recalculated.
10) Not Used
11) MASS FLOW REQUIRED EXCEEDS MAXIMUM MASS FLOW POSSIbLE

This urror is detected in Subroutine CKINPT. If it is determined that choked flow exist. in the duct, this diagnostic will be printed; the weight flow must be teduced.
12) pressure rise exceeds permissible pressure rise

This error is detected in Subroutine CKINPT and indicates that the deck cannot calculate properly the initial flow profiles. Check input for errors.
13) ItERATION OF back pressure calc. fails to converge

This orror is detected in Subroutine FINVIS.

In the calculation of strut forces, it has been assumed that the strut exit flow is subsonic and unseparated (i.e., $\mathrm{U}_{\mathrm{s}}>0$). If these conditions are violated, no solution can be obtained. The calculation will stop.
14) bolindary layer too thin for mesh spacinc.

This error is detected in Subroutine FLDWIN. The viscous flow calculation requires a finite initial boundary layer thickness. In addition, it requires enough mesh points to deacribe the inlet boundary layer velocity profile. The deck assumes arbitrarily that at least five mesh points are required. Thus. if this diagnostic occurs, increase the number of mesh points, KL, increase the mesh distortion parameter, DDS, or increase the assumed inlet boundary layer thickness. If DDS is input equal to zero, the program automatically sets the mesh distortion parameter to the appropriate value for turbulent flow.
15) total pressure is less than static pressure

This error is detected in Subroutine FLOWIN. A check is made on the input data for $1 \| P T 1=4$ to make sure that $P_{T}>P$.
16) INPUT data not in radial equilitbrium corrections applied to static pressure

This error is detected in Subroutine FLOWIN. A check is made of the input static pressure data for IDPTI - 4. If the static pressure data are not in radial equilibrium, it is assumed that the static pressure data are in error and that the other inlet data are correct. Then the static pressure profile is computed from

$$
\frac{d \Pi}{d \eta}=2 \frac{\gamma}{\gamma-1}\left[\frac{-1}{X V} \frac{\partial V}{\partial n} \cos ^{2} \alpha-\frac{1}{X R} \frac{\partial R}{\partial n} \sin ^{2} \alpha j \Pi\left(\binom{\pi_{\circ}}{\Pi}^{\frac{\gamma-1}{\gamma}}-1\right)^{\frac{1}{2}}\right.
$$

with the ID wall static pressure as a boundary condition.
17) INPUT DDS MUST BE SPECIFIED

This error is detected in Subroutine $\operatorname{FN} \emptyset \mathrm{RM}$. At this time there is no algorithm to select automatically the mesh distortion parameter DDS for laminar flow.
18) BLADE DATA ERROR IN CKINPT ROUTINE

This error is detected in Subroutine CKINPT. Blade data have been input incorrectly and must be rearranged with Y increasing.
19) NO UNIQUE SOLUTION FROM MINVRT

This error is detected in Subroutine MINVRT. If the matrix used to solve for the turbulent flow solution is singular, no solution can be obtained. This situation may occur due to numerical truncation errors.
20) LEADING OR TRAILING EDGE INDEX OF STRUT OUT OF RANGE

This error is detected in Subroutine SLETE. In order to compute blade forces, the strut must be located entirely within the duct length. This problem may be eliminated by extending the duct as shown in the figure.

Extended Duct Section
21) SLOT INPUT NOT IN INCREASING ORDER

This error is detected in Subroutine SLøTA.

The slot input data must be arranged in order of increasing axial distance. Check input data. The calculation stops if this error is detected.
22) CHOKED FLOW IN SLOT NO.

This error is detected in Subroutine SLTFLD. The slot weight flow is determined by the ratio of the stagnation pressure of the slot coolant fluid to the local wall static pressure. If this pressure ratio is too large the flow may be choked at the slot inlet. The calculation will stop.
23) BOUNDARY LAYER OVERLAP OR TOO LARGE

This error is detected in Subroutine FLDWIN. For internal flow, the sum of the boundary layer thicknesses on the hub and tip walls must be less than the duct inlet height. Check input data.
24) SET TOTAL TEMPERATURE, PRESSURE, ANGLE TO VALUE AT EDGE OF BOUNDARY LAYER - CORRECTIONS APPLIED

This error is detected in Subroutine FLøWIN. For IめPT1 $=4$, the calculated boundary layer profiles are matched to input inlet flow profiles.

A good match requires that the stagnation pressure, P_{T}, be constant in the experimentally determined boundary layer region as shown in the figure (dashed line).

Constructing the Inlet Flow
25) TRUNCATION ERROR CANNOT BE REDUCED BY STEP SIZE

This error is detected in Subrnutine SøLVI. If the step size parameter (KDS) is not specified, it is selected automatically by checking the truncation error at each step. When an instability occurs, the program attempts to reduce the truncation error by reducing the streamwise step size. If the truncation error cannot be : educed below a minimum value, the calculation stops.
26) NUMERICAL INSTABILITY

This error is detected in Subioutine FCøRCT and Subroutine SøLVI and is an indication that the prosam has calculated negative temperatures or pressures. The calculatior stops if this problem occurs.
27) RHOCX ITERATION DID NO: CONVERGE, ERR $=$

This error is detectec i: Subroutine FøRCE. In determining the blade force, an iteratior scheme is used to determine the downstream static pressure. If this iteration fails to converge, this diagnostic is printed together with the maximum error found in the iteration. The calculation, however, is not terminated.
28) $1 \emptyset \mathrm{PT} 3=2$ OPTION NOT IN USE

This error is detected in Subroutine $F \emptyset R C E$ but this option has been deleted from the current version of the ADD code.
29) SOLUTION REQUIRES REVERSE FLOW, INCREASE WFLOW

This error is detected in Subroutine CKINPT. For flows with radial pressure gradients, there is a minimum weight flow below which reverse flow exists. This problem can be corrected by increasing the weight flow. The calculation will stop.
30) LOAD DOWNSTREAM FLOW DATA CARDS

This error is detected in subroutine CALINV and indicates that the downstream flow data cards, :cquired by $\operatorname{IOPTl}=4$ or 9 , have not been entered. The calculation will stop.
31) SOLUTION FOR BLADE FORCE DOES NOT EXIST

This error is detected in subroutine $F \emptyset R C E$. The blade force cannot be calculated because no inviscid flow solution can be calculated. (Same as DIAGNØSTIC 29) The calculation will stop.
32) GRADIENT OF METRIC COEFFICIENT =

FOR BETTER RESULTS ADD STRAIGHT CHANNEL INLET

This error is detected in Subroutine C $\varnothing \emptyset$ R 4 . It is assumed that the inlet duct has no curvature. To avoid problems, add a straight annular section to the inlet. The calculation will continue.
33) INPUT TOO LARGE FOR COLE'S LAW

SET N < \qquad

This error is detected in subroutine FLOWIN.

Cole's friction law requires a certain relationship $H_{12}=H_{12}$ (R_{e}) such that there is an upper bound of $n<10$. For a solution to exist,

$$
A=k \frac{U e}{U^{\star}}\left(1-\frac{1}{H_{12}}\right)>1.573
$$

Setting

$$
H_{\min }=1-\frac{\frac{1}{\frac{1.5731}{\mathrm{~K}^{*} \mathrm{e}}}}{\frac{\mathrm{U}^{*}}{}}
$$

Then

$$
\mathrm{n}<\frac{2}{\mathrm{H}_{\min }-1}
$$

The calculation will stop.
34) WEIGHT FLOW ITERATION MAY NOT CONVERGE IN SUBROUTINE CKINPT CHECK INPUT DATA.

This error is detected in Subroutine CKINPT. The weight flow iteration that determines the static pressure may not converge if the free stream inviscid flow is highly distorted. An input flow which is more uniform in stagnation pressure is required. The calculation will stop.
35) WFLI AND IOPT11 OPTIONS INCOMPATIBLE

This error is detected in subroutine ALTMN. The weight flow cannot be specified for ex ernal flow. The calculation will stop.
36) $I \emptyset \mathrm{PT}=1$ OR I \quad PTI $=2$ OPTIONS NOT USED

This error is detected in Subroutine ALTMN. The options I \emptyset PT1 $=1$ and $I \emptyset P T 1=2$ have been deleted from the code.
37) CONFLICT OF OPTIONS, IøPT14<O IMPLIES SEPARATION AND GLOBAL ITERATIONS. AUTOMATIC STEP SIZE ALGORITHM CANNOT BE USED.

This error is detected in Subroutine SøLVI. When performing a global iteration (IOPT14>0), the same number of streamwise steps must be used for each iteration. Hence the automatic step size algorithm for the streamwise direction must not be used. The calculation will stop.

4.5 Debug Options for ADD Code

When set equal to unity, these options allow intermediate results calculated by the subroutine indicated to be printed as an aid in debugging a troublesome case. Note that these outputs are not converted to metric units and reference must be made to the source code for interpretation of printout.

OPTION	SUBROUTINE	OBJECTIVE OF SUBROUTINE
IDBGI	TURB	Calculates two-layer turbulence model
IDBG2	FCøRCT	Calculates shear stresses and heat riluxes at each station
IDBG3	FLOWIN	Generates initial flow profiles
IDBG4	SLTFLø	Calculates slot inlet flows
IDBG5	SゆLVI	Calculates viscous flow solutions
IDBG6	$C \emptyset \emptyset \mathrm{R}$	Generates required geometric parameters
IDBG7	FøRCE	Calculates forces generated by struts and blades
IDBG8	MINVRT	Inverts a matrix
IDBG9	SMDØTH	Smooths duct contour read via $\mathrm{I} \emptyset \mathrm{PT} 3=2$
IDBG10	GDUCT	Calculates duct geometry
IDBG11	SLTFL \emptyset	Obtains additional information from SLTFL \varnothing see IDBG4
IDBG12	SøLVI	Obtains additional information from SøLVI see IDBG5
IDBG13	CKINPT	Checks inlet flow input for errors
IDBG14	SゆLVI	Debugs the algorithm that automatically computes the maximum step size in the streamwise direction while assuring computational stability.
IDBG15	Not used.	
IDBG16	Not used.	
IDBG17	Not used.	

4.6 Sample Input for ADD Code

Two sample inputs to the ADD code are presented on the following pages. These cases correspond to the two design studies described in Vol. I Section 7.0. The first sample is the input for the Swirl lube Premixing Passage Case and the second sample is the input for the Series Staged Premixing Passage Case.

Swirl Tube Premixing Passage

The option card (line 2) indicates that the inlet flow conditions are to be calculated from input flow profile data ($\mathrm{I} \emptyset \mathrm{PT}=9$). The duct geometry is to be determined using the straight wall annular diffuser option (IØPT3=3). Only the solution at every 5 th station is to be printed ($I \emptyset P T 4=5$) and the coordinates are to be read from a priviously calculated data file (I \varnothing PT9=3). The mesh parameter card (line 3) indicates that the default mesh distortion parameter ($D D S=0.0$) and ster size ($K D S=0$) algorithms are to be used. Two sets of 26 input data cards each describing the inlet and exit flow profiles, respectively, will be read. The duct geometry card (line 4) indicates that the overall duct length is 11.1 cm and that the inlet radius is 2.8956 cm . The inlet flow card (line 5) shows that the initial boundary layer displacement thickness is 0.029 cm and that a $1 / 7$ power law profile is assumed for each wall. Lines 6 through 31 are the KLL=26 inlet flow profile data cards and lines 32 through 57 are the KLL-26 exit flow profile data cards which are identical to the inlet flow cards. The last card indicates that default values are used for the remaining input parameters exce• for the Prandtl number, heat capacities, and molecular viscosity.

Series Staged Premixing Passage

The option card (line 2) indicates that the inlet flow is to be calculated assuming a constant stagnation pressure and stagnation temperature in the core flow ($\mathrm{I} \emptyset \mathrm{PTl}=3$). The duct geometry is to be read from input data cards (I $\emptyset \mathrm{PT} 3=2$). On the mesh parameter card (line 3), the default mesh distortion parameter (DDS=0) has been selected but the streamwise step size parameter has been input $K D S=2$. From line 3, it is noted that the duct coordinates at JLPTS $=50$ equally spaced axial stations are to be read and that the least squares spline smoothing routine will be used (JLPTS $\neq \mathrm{JL}$). The length of the duct is 22.72 cm (line 4). Lines 5 through 11 contain 50 data points for the tip radii and lines 12 through 18 contain 50 data points for the hub radii. The inlet Mach number is 0.102 (line 19), the stagnation pressure is 11.06 atm , and the stagnation temperature is 745 K .

5.0 OPERATION OF PTRAK CODE

5.1 Runstreams for PTRAK Code

Autoignition Model Not Used

It is assumed that:

1. The program will be executed in TPF\$;
2. The executable (absolute) element is PTRACK7;
3. The catalogued files, EIGHT and NINE, exist and have been written into by the $A D D$ code (see ADD code input format);
4. A catalogued file exists for storing the fuel vaporization terms for use with the VAPDIF code (and is called SEVENTEEN in this example).

Then the following runstream is sufficient to execute the PTRAK code.
@ASG,AX EIGHT.,D/O/TRK/300000
@ASG,AX NINE., D/O/TRK/250000
@USE 8,EIGHT
@USE 9,NINE
@ASG,T 12,D/700000/TRK
@ASG,T 14,D/60000/RRK
@ASG,AX SEVENTEEN.,D/O/TRK/300000
@USE 17,SEVENTEEN
@ASG,T 18
@ASG,T 19
@XQT PTRACK7
(INPUT CARDS)
@FREE 8
grree 9
@FREE 12
@fREE 14
@FREE 17
@free 18
@FREE 19
Autoignition Model User'.

It is assumed that:

1. The program will be executed in TPF\$;
2. The executable (absolute) element is PTKACK7;
3. The catalogued files, EIGHT and NINE, exist and have been written into by the $A D D$ code (see ADD code input format);
4. A catalogued file exists for storing the fuel vaporization terms for use with the VAPDIF code (and is called SEVENTEEN in this example).
5. A catalogued file exists for storing the critical species source terms for use with the VAPDIF code (and is called TWENTYSEVEN in this example);
6. A catalogued file exists for storing the temperature depression source terms for use with the VAPDIF code (and is called TWENTYEIGHT in this example).

Then the following runstream is sufficient to execute the PTRAK code when using the autoignition model.
@ASG,AX EIGHT.,D/O/TRK/300000
@ASG,AX NINE., D/O/TRK/250000
@USE 8, EIGHT
@USE 9,NINE
@ASG: : 12,D/700000/TRK
QASG,T 14,D/60000/TRK
easg,ax SEventeen.,D/O/TRK/300000
QuSE 17,SEVENTEEN
OASG, 18
CASG,T 19
@ASG,AX TWENTYSEVEN.,D/O/TRK/300000
@USE 27,TWENTYSEVEN
@ASG,AX TWENTYEIGHT.,D/O/TRK/300000
@USE 28,TWENTYEIGHT
@XQT PTRACK7
(INPUT CARDS)
eFREE 8
eFREE 9
@FREE 12
QFREE 14
@FREE 17
CFREE 18
QFREE 19
@FREE 27
@FREE 28

5.2 Input Format for PTRAK Code

The input to the PTKAK code is described on the input data coding forms which follow. These coding forms are arranged with one form per innut data card. Each form contains the names of the input variables, the format, and a description of the data. In general, the input data is read as follows:

Card 1 Title Card
Card 2 Option Card
Card 3 Fuel Class Description Card

Card 4 Injector Description (ILøC) Cards
Card 5 Initial Velocity (IL叩C) Cards

Card 6 Fuel Flow Rate Card
Card 7 Fuel Thermodynamic Constants Card

Card 8 Fuel Thermodynamic Functions (6) Cards

Card 9 Air Thermodynamic Constants Card
Card 10 Air Thermodynamic Functions (3) Cards

Card 11 Mesh Description Card

Card 12 Distillation Curve (IDSTL+1) Cards

Card 13 Collision Data Card

Card 14 Cox Chart Data Cards (IC $\$ \mathrm{XI}+1$) Cards
Card 15 Autoignition Model Constants (3) Cards
ORIGINAL TLAE 8 IS
OF POOR QUALIT

ORIGINAL PAOE 15 OF POOR QUALITY
PTRAK CODE INPUT
(Droplet Shattering Model Option)

ORIGINAL FREE :
OF POOR QUALITY
IØPT5
IØPT6
IØPT7
Note:
Last Axial Station for Performing Trajectory Calculations.
Program will Use "JL" From ADD Run
(Friction Drag Option)
$=0$ Use Droplet Drag Coefficient Correlations
$=1$ Set Drag Coefficients to Zero
(VAPDIF Storage Option)
$=0$ No Information Is Stored on Unit 17
$=2$ Store vapor, critical species and temperature depression source terms Volume I, Section 8.0)
$=3$ Same as IøPT7 $=2$ but for Model II
Debug options are described in Section 5.5
PTRAK CODE INPUT

ILøC * IVS * IPHI * ITHE * IDIA ≤ 1250

승

PERLøC Percentage of Total Fuel Flow Injected at This Location
Note: See Fig. 5.1

FIG. 5.1

FUEL INJECTOR DESCRIPTION

(CARD NO. 4)

,

$$
\begin{aligned}
& \text { INITIAL CHARACTERISTICS OF CLASSES } \\
& \text { Read ILøC Cards }
\end{aligned}
$$ $\frac{8}{\frac{8}{8}}$ $(\mathrm{m} / \mathrm{sec})$

$(\mathrm{m} / \mathrm{sec})$ (deg)
(deg)
(deg)
(deg)
(deg)
©
号
岂
-

ORIGINAL PACE is OF POOR QUALITY

$$
\begin{array}{r}
15 \\
0 \\
0 \\
8 \\
8 \\
5 \\
0 \\
8 \\
1 \\
0 \\
0
\end{array}
$$

VMEAN Magnitude of Mean Velocity at Each Location

PTRAK CODE INPUT
Cards 5

ORIGINAL PAOE KIG OF POOR QUALIT

INPUT DROPLET VELOCITY VECTORS

QF Total Fuel Flow Rate (kg/sec)

ORIGINAL FREN FA Of POOR Cunts

PTRAK CODE INPUT
FøRMAT (5E10.5)

FUEL THERMODYNAMIC CONSTANTS

............................

Card 7

Polynomial functions are used to evaluate fuel properties

$$
\begin{aligned}
\text { PROPERTY }= & A 1+A 2 * T+A 3 * T^{2}+A 4 * T^{3} \\
& \text { where } T=\text { Temperature (deg } K)
\end{aligned}
$$

\[

\]

R82-915362-40
PTRAK CODE INPUT
AIR THERMODYNAMIC CONSTANTS
Read 3 cards
AIR THERMODYNAMIC CONSTANTS FØRMAT (5E10.5)
Read 3 cards

FøRMAT (5E10.5)
Cards 10
Cards 10

PTRAK CODE INPUT
FøRMAT (2I10, E10.5)

$$
\text { Card } 11
$$

Number of grid points used to define the lateral (tangential) extent of the duct ($2 \leq$ LPHI ≤ 50)
Angular step size in tangential direction. The product (LPHI-l)*DPHI is the angular "width" of the duct. In this manner, the annular flow field generated by the ADD code can be subtended by permeable or impermeable sidewalls - See IøPT3 (deg).
Note: See Fig. 5.3

FIG. 5.3

8 2
R
R
R
R

11

PTRAK CODE INPUT
Card $14 a$ Read IC \varnothing Xl cards COX CHART DATA CARDS FØRMAT (3F10.5) Read
III

Cox Chart for the Simulation of a Pure Substance

The Cox Chart for simulating a pure substance consists of (a) a set of arbitrary "carbon" numbers, $\operatorname{COX}(1)$; (b) a set of arbitrary temperatures for a vapor pressure of $\mathrm{PICH}, \operatorname{COX}(2)$; and (c) a set of temperatures all of which are equal to the temperature that produces a vapor pressure of $\mathrm{P} 2 \mathrm{CH}, \mathrm{COX}(3)$. At any point in the calculation, the program will obtain the distillation temperature for the instantaneous value of percentage of fuel evaporated (this temperature for a pure substance is the normal boiling point), calculate an obviously meaningless "carbon" number, and then find the temperature that produces a vapor pressure equal to P 2 CH . These parameters are sufficient to calculate the vapor pressure at the instantaneous value of droplet temperature (see Volume I, Section 4.5). A Cox chart for the normal paraffin series is given in Table 5.1.

TABLE 5.1

COX CHART FOR NORMAL PARAFFIN SERIES

Carbon No.	$\begin{aligned} & \mathrm{P} 1 \mathrm{CH}=1 \mathrm{~atm} \\ & \mathrm{P} 2 \mathrm{CH}=6.8 \mathrm{at} \end{aligned}$	
	T@P1CH (deg K)	T@P2CH (deg K)
2	175	225
3	230	285
4	270	335
5	310	380
6	345	420
7	370	455
8	405	485
9	430	515
10	455	540
11	475	570
12	490	590
13	510	605
14	530	625
15	545	640
16	560	660
17	580	675
18	588	690
19	605	700
20	620	715
23	640	740

ORIGINAL PACR IS
OF POOR QUNLT:
where X 02 , XFUEL, $X 2$ are concentrations of oxygen, fuel vapor and critical species in mole/cc
EF Apparent activation energy (cal/mole)
AF Constant such that the units of $d X 2 / d t$ are mole/cc-sec
R82-915362-40
PTRAK CODE INPUT
Constants for critical species depletion ("backward") reaction rate expression
FORMAT (7E10.5)
AUTOIGNITION MODEL CONSTANTS

ORIGINAL PAGRE IS OF POOR QUALITY

Note: For Model II, enter a blank card.

5.3 Output Description for PTRAK Code

The output on each page from the PTRAK code is largely self-explanatory. A general description of the output by page is given below.

Title Page

This page presents a list of modifications, dates, and references to all changes to the PTRAK code.

Option Page

This page lists all options used in the PTRAK calculation and the number of classes in each category.

Fuel Injector Page

This page lists the location and initial conditions for all fuel injectors. The total fuel flow rate is also printed.

Fuel Thermodynamic Properties Page

This page presents the thermodynamic data and transport properties for both the fuel liquid and vapor phases.

Air Thermodynamic Properties Page
This page presents both the thermodynamic data and transport properties for the air and the mesh parameters.

Multicomponent Fuel Properties Page

This page lists the data for the distillation curve and Cox chart.

Autoignition Model Constants Page
This page lists all constants used in the autoignition model.

Initial Conditions by Class Page

This page describes the initial conditions, including number density, for all droplet classes.

Duct Geometry Page
This page presents the coordinates of the duct contour.

Solution Pages

These pages present all of the dependent variables by class, and the overall Sauter mean diameter, number of droplets, and fuel flow rate at each axial station.

Sumnary Page

The summary page presents the global properties of the fuel spray and includes the Sauter mean diameter, liquid fuel flow rate, percentage of fuel evaporated, and fuel-air ratio as a function of axial distance.

5.4 Diagnostics for PTRAK Code

Numerous checks are made during the course of the calculation. If a minor error occurs, a DIAGNØSTIC message is printed and the calculation continues. If a fatal error occurs, a DIAGNøSTIC is printed and the calculation is stopped. A description of these errors is given in this section. The DIAGNØSTIC messege is always of the form
DIAGNØSTIC NO. XX FOR PTRAK CODE
where xx refers to one of the errors listed below.

1. FAILURE TO INTERPOLATE IN FINTP

This error occurs when the PTRAK code cannot find the location where a particle track crosses a grid point. The axial step-size should be reduced by increasing KDS. This error causes the calculation to terminate.

5.5 Debug Options for PTRAK Code

When set equal to unity, these options allow intermediate results calculated by the subroutine indicated to be printed as an aid in debugging a troublesome case. These outputs are not converted to metric units and reference must be made to the source code for interpretation of the printout.

OPTION
SUBROUTINE

IDBG1 PTRAK
IDBG2 B 2 UNCE

IDBG3 C 3 LLSM, COLLDB

5.6 Sample Input for PTRAK Code

This sample of input to the PTRAK code is based on the Series Staged Premixing Passage case described in Volume I, Section 7. The option card (line 2) indicates that the duct is an annular passage with periodic boundary conditions (IŋPT3=4). Thus the inner and outer boundaries are to be treated as solid walls and the two remaining boundaries represent the lateral extent of the annular segment being considered. While the air flow in this case is not swirling, droplets injected normal to the flow direction but in the angular direction may exit from this segment to an adjacent segment. If droplets do exit through one of the "sidewalls", then a source of droplets identical in all respects to this sink of droplets must enter this segment through the opposite sidewall. Only the behavior of the spray in a $1 / 60$ th segment of the annular duct is to be calculated (LPHI $=31$ and DPHI = 0.2 from line 24). From line 5, the fuel class description card, there are four injectors ($I L \emptyset C=4$) and only one class is to be formed at each injection location using the binominal distribution function for each property. Thus, the total number of droplet classes is four. These four injectors, described on lines 4 through 7 , are located 7.48 cm from the inlet. Lines 8 through 11 describe the initial velocity components and droplet size for each injector. The fuel flow rate is $.01146 \mathrm{~kg} / \mathrm{sec}$ (line 12). The thermodynamic and transport data for the fuel and air are presented on lines 13 through 23. The distillation curve appears on lines 25 through 31 and the Cox chart is listed on lines 33 through 53. All droplets which strike a solid wall will rebound elastically (line $32, \mathrm{Cl}=1.0$).

ORIGNAL PAGE＇is OF POOR QUALTTY

UロOM ucice
ゴココ
・ー・••
・ビい
Nnts

$\therefore P R T, S$ TATAFL．PARIE

6.0 OPERATION OF VAPDIF CODE

6.1 Runstreams for VAPDIF Code

Calculation of Fuel Vapor Mass Fraction Distribution

It is assumed that:

1. The program will be executed in TPF\$;
2. The executable (absolute) element is DIFFUSEMAP;
3. The catalogued files, EIGHT and NINE, exist and have been written into by the ADD code;
4. The catalogued file, SEVETTEFN, exists and has been written into by the PTRAK code;
5. The catalogued file, FUELS\&L, exists and will be written into by the VAPDIF code. It is used to permit the VAPDIF code to res cart a case subsequent to the initial run. If no restart capability is desired, this file may be a temporary file. The file FUELS $\emptyset L$ contains the solution of the diffusion equation at each mesh point for the fuel vapor mass fraction.

Then the following runstream is sufficient to execute the VAPDIF code.
@ASG,AX EIGHT,D/O/TRK/300000
@ASG,AX NIME,D/O/TRK/250000
@USE 8,EIGHT
@USE 9,NINE
@ASG, T 10,D/O/TRK/2250000
@ASG,AX FUELSめL, D/O/TRK/250000
@USE 11,FUELSØL
@ASG,T 12/D/O/TRK/750000

CASG,T 13, D/O/TRK/2250000
dASG, AX SEVENTEEN. ,D/O/TRK/300000
@USE 17,SEVENTEEN
@XQT DIFFUSEMAP
(INPUT CARDS)
@FREE 8
afree 9
@FREE 10
@FREE 11
@FREE 12
@FREE 13
@l REE 17

Calculation of Critical Species Concentration Distribution

The mass fraction of critical species (ethene when using autoignition Model I) or of the relative mass fraction of the unknown critical species (using autoignition Model II) can be calculated using the following runstream once the fuel vapor mass fraction distribution is known.

It is assumed that:

1. The program will be executed in TPF $\$$
2. The executable (absolute) element is DIFFUSEMAP;
3. The catalogued files, EIGHT and NINE, exist and have been written into by the ADD code;
4. The catalogued files, SEVENTEEN, TNENTYSEVEN and TWENTYEIGHT have been written into by the PTRAK code;
5. The catalogued file, ELEVEN, exists and will be written into by the VAPDIF code. It is used to permit the VAPDIF code to cistart a case subsequent to the initial run. If no restart capability is desired, this file may be a temporary file. The file ELEVEN contains the solution to the diffusion equation at each mesh point for the concentration of critical species.
6. The catalogued file, FUELS \emptyset, exists and contains the fuel vapor mass fraction distribution determined previously by the VAPDiF code.

Then the following runstream is sufficient to execute the VAPDIF code when using the autoignition model.
@ASG,AX EIGHT,D/O/TRK/300000
@ASG,AX NINE,D/O/TRK/250000
@USE 8,EIGHT
@USE 9,NINE
@ASG,T 10,D/0/TRK/2250000
@ASG,AX ELEVEN,D/O/TRK/250000
@USE 11,ELEVEN
@ASG,T 12/D/O/TRK/750000
@ASG,T 13,D/0/TRK/2250000
@ASG,AX SEVENTEEN.,D/0/TRK/300000
@USE 17,SEVENTEEN
@ASG, AX FUELSøL.,D/O/TRK/250000
@USE 19,FUELSøL
@ASG,AX TWENTYSEVEN.,D/O/TRK/300000
@USE 27,TWENTYSEvEN
@ASG, AX TWENTYEIGHT.,D/O/TRK/300000
@USE 28,TWE:'TYEIGHT
@XQT .. DIFFUSEMAP
(INPUT CARDS)
@FREE 8
@FREE 9
@FREE 10
@FREE 11
@FREE 12
@FREE 13
@FREE 17
@FREE 19
@FREE 27
(dFREE 28

6.2 Input Format for VAPDIF Code

The input to the VAPDIF code is described on the input data coding forms which follow. These coding forms are arranged with one form per input data card. In general the input data is read as follows:

Card 1 Title Card

Card 2 Option Cara

Card 3 Print Option Card

Card 4 Miscellaneous Data Card
Card 5 Autoignition Model Constants (4) Cards
VAPTIF CODE INPUT

FøRMAT (40I2)
 > OPTION CARD

 OPTION CARD

 OPTION CARD
 Card

Card 2

[^0]ORIGINAL PAOE IS
OF POOR QUALITY
VAPDıF CCDE INPUT

$=0$ Print mass fractions
$=1$ Do noc print mass frac
1 Do noc print mass fractions - Print Y (calculation coordinates) $=2$ Print H (metric coefficients)
$=0$ No print of the following:
$=1$ Do noc print mass fractions

62-40

Relaxation parameter. If omitted, the value is obtained from an equation due to Garabedian:

where
 A value of $W R=1.0$ is; recommended.
Initial, uniform level of fuel vapor mass fraction in entrance plane.

ORIGINAL PACE IE E OF POOR QUALITY

$=0$ Fuel vapor diffusion calculation only
$=1$ Use Autoignition Model I (see Volume I, Section 8.0)
$=2$ Use Autoignition Model II

Number of time steps in integration of reaction rate equation for autoignition model (10 if omitted). If Δs is the axial step and U is the mean flow velocity within this step, then the residence time per step is $\Delta t=\Delta s / u$ so that the integration stey-size, δt, for the reaction rate equation is

$$
\delta t=\Delta t / \text { ISGMAX } .
$$

If ISDG $=1$, set ISGMAX large enough such that $\delta \mathbf{t} \boldsymbol{z} 1 \mathrm{usec}$
If ISDG $=2$, set ISGMAX $=1$ since $d X 2 / d t$ is not a function

ISGMAX
$c-2$
Y
0
0

ORIGINAL PREXI IS
YAPDIF CODE INPUT
CARBN
Y02
MDLE1
Molecular weight of fuel
Mole fraction of oxygen in carrier gas（ 0.21 for air）
FORMAT（3E10．5）
Number of carbon atoms in fuel moelcule

Constants for critical species production ("forward") reaction rate expression
$\mathrm{dX} 2 / \mathrm{dt}=\mathrm{AF} * \operatorname{EXP}(-\mathrm{EF} /(\mathrm{R} * \mathrm{~T})) * X 02 * *$ ALPF*RFUEL**BETF*X2**GAMF

Constant such that the units of $\mathrm{dX} 2 / \mathrm{dt}$ are mole/cc-sec
where
EF
AF

6.3 Output Description for VAPDIF Code

The output on each page from the VAPDIF code is largely self-explanatory. A general description of the output by page is given below.

Input Page

The input page presents all of the input data including: options, computational grid size controls, iteration parameters, and the axial coordinates of the corner point ($J=1, K=1$). In addition the reference conditions for the ADD code viscous flow field are printed.

Source Term Pages

If IPRNT4=1, the source terms on the crossplane grid are printed. These terms are arranged by (K row), (J column) where K is the index for the tangential (azimuthal) coordinate and J is the index for the normal (radial) coordinate.

Solution Page

If IPRNT1 $=0$, the mass fractions on the crossplane grid are printed.

Coordinate Grid Page

For IPRNT2 or IPRNT3 $\neq 0$, the coordinates on the crossplane grid are printed.

Iteration Page

If IDBI $=1$, the iteration history of the calculation is printed. This printout includes the iteration number, residual, maximum concentration, and mass flow weighted average concentration for each residual.

Flow Summary Page

This page presents values of vapor flow rate and vapor fuel to air ratio as a function of axial location determined by integrating the vapor concentration over the crossplane grid at each axial station. The last column, labeled CTIL, is the overall vapor fuel to air ratio as determined by the PTRAK code and serves as a check of the accuracy of the VAPDIF calculation.

6.4 Diagnostics for VAPDIF

At the present time no diagnostics exist for the VAPDIF code.

6.5 Debug Options for VAPDIF Code

If the options IDB1, IDB2, IDB3 are set equal to unity, intermediate results are printed for each iteration.

Optio: Dat. Printed
IDB1 Print maximum iteration residuals
IDB2 Not used
IDB3
Print coefficients of inearized equations
The solution for each iteration at the point (JIDBG, KIDBG) on the calculation plane (crossplane grid) may also be printed. These terms are arranged by (K row), (J column) where K is the index for the tangential (azimuthal) coordinate and J is the index for the normal (radial) coordinate. Solutions for the points (J2DBG, K2DBG), (J3DBG, K3DBG), and (J4DBG, K4DBG) may also be displayed.

It is recomended that IDB1 be set equal to unity.

6.6 Sample Input for VAPDIF Code

The sample of input to the VAPDIF code is based on the Swirl Tube Premixing Passage case described in Volume I, Section 7. Since almost all input data required to run the code is stored in data files generated by the ADD and PTRAK codes, little input is required by the VAPDIF code. On card 2 (line 2), it is noted that the number of iterations is limited to I $\emptyset P T 1=5$. The initial flowfield station is located at the first ADD code coordinate station (IADD=1), the first calculation station after the initial plane is IBEGIN=2, and the calculation will terminate at station IEND $=5$. The print option card (line 3) indicates that both the concentrations and fuel source distributions will be printed at each station. The last card (line 4) shows that the Schmidt number is unity.

ORIGINAL PANE 郘 OF POOR QUALITY

VAPOR OIFFUSION CASE FOF PARAMETRIC CASE 1
OCOIOR
1.0

7.0 GLOBAL STRUCTURE

7.1 Interaction of ADD, PTRAK, VAPDIF Codes

The Global Structure Flow Chart which describes the interactions of the ADD, PTRAK, and VAPDIF codes is shown on Fig. 7.1. The three coder are executed independently in the sequential order shown and output stored on data files. The data files (Units $8,9,11,17,19,27,28$) are the only interfaces between the codes.

The ADD code calculates the computational coordinates (S, N) and physical cylindrical coordinates (r, z) and stores this data on Unit 9. This coordinate data is required by both the PTRAK and VAPDIF codes. The ADD code also calculates the viscous flow solution and stores the flow variables ($\mathrm{P}, \mathrm{T}, \mathrm{P}, \overrightarrow{\mathrm{V}, \mu_{\mathrm{E}}}$) on Unit 8. These flow variables are required by both the PTRAK and VAPDIF. Certain control parameters, such as the number of streamlines KL and number of streamwise stations JL , which are requir d by the PTRAK and VAPDIF codes are also stored on Units 8 and 9 and are not required inputs to these codes. This procedure reduces conflicts or ambiguities when executing the three codes.

The PTRAK code calculates the droplet trajectories and degree of evaporation from the initial droplet conditions and known flow field. This solution is used to calculate the source terms W_{f} and $W_{f w}$ which are stored on Unit 17 for use by the VAPDIF code. The PTRAK code also calculates preignition reactions and stores a source term S_{d} on Unit 27. As the droplets evaporate, they cool the surrounding air. This temperature drop ΔT is stored on Unit 28.

The VAPDIF code can be executed in two modes. The first execution, with ISDG $=0$, calculates the three dimensional fuel concentration throughout the flow field using the fuel source distribution calculated from the PTRAK code. This solution is written on Unit 11 . On the second execuition, ISDG=1 or 2, VAPDIF calculates the concentration of critical species. The fuel concentration which was previously written on Unit 11 is read on Unit 19 and used to calculate the source term due co chemical reaction in the gas phase. The critical species concentration is then stored on Unit 11.

It is noted that all control parameters are calculated and stored by the first code and are not required input to succeeding codes. This arrangement of codes produces considerable flexability in that any data which is calculated and permanently stored on data files need not be repeated. As an example: for any given premixing duct and airflow conditions, several different droplet ejectors may be examined using the PTRAK code without repeating the ADD code calculation.

OLOBAL STRUCTUAE FLOW CHART

7.2 Input/Output Data Files

The output data files for the ADD; PTRAK, and VAPDIF codes are described on Tables $7.1,7.2,7.3$ respectively. These tables show the Unit number, the names of the arrays stored on the file, the block (record) length in words, the number of blocks (records), and the subroutine generating the files. All unit numbers are set by parameters statements (in brackets). All arrays are single precision except AFF generated by the ADD code.

In the operation of the ADD code, only files assigned to Units 8, 9, 11, and 22 are required. The other files are only used for special options in the ADD code which would not generally be used for a LPY duct calculation. Note also that only output files are shown under the computer code name. Input files for the PTRAK code are described on Table 7.1, and input files for the VAPDIF are described on Tables 7.1 and 7.2 . The actual file assignments and :unstreams for each code are described in Sections 4.1, 5.1, and 6.1.

These data files are read/written by general I/O routines DRDUT in the ADD/81 and TAPDIF codes or by BLKRED in the ADD/82 (Ref. 4) and PTRAK. These subroutines use the UNIVAC Library I/O routine NTRAN. Both DRøUT and BLKRED are easily converted to ANSI scandard FøRTRAN DEFTNE FILE.

Table 7.1

Table of File Assignments ADD Code

$\begin{aligned} & \text { UNIT } \\ & \text { NO. } \\ & \hline \end{aligned}$	ARRAY NAME	BLOCK LENGTH (WDS)	$\begin{gathered} \text { NO. } \\ \text { BLOCKS } \end{gathered}$	SUBROUTINE WRITING BLOCK
8 (NDRUM)	$\begin{aligned} & \text { F(NEQ, 3, IST) } \\ & \text { FPARM(15) } \end{aligned}$	3015	JL-2	S \emptyset LVI
9(JDRUM)	JSTEP २(19, IST) RHS(10) RMS (10) $\operatorname{RTS}(10)$ DSTEP QPARM(9)	1941	JL.	CøORST
10 (CDRUM)	$\mathrm{FF}(17,2, \mathrm{IST})$	3400	1	8 Af, \% \%
11 (LDRUM)	AFF (LNGTO) **	6000	5	SøLVI
12 (LF®RC)	$F \emptyset R C$	780	1	FDRCE
19 (KPゆIS)	JSTEP Q(19, IST) RHS (10) RMS (10) RTS(10) DSTEP QPARM(9)	1941	JL	CøØRS"
22 (MDRUM)	$\begin{aligned} & \text { FIV(NEQ, 3,IST) } \\ & \text { FIPARM(15) } \end{aligned}$	3015	JL-2	CALINV
23 (NFDRM)	F(IST4)	104	JL+NST-2	POISCF
24 (NPDRM)	P(IST)	100	JL+NST-2	POIS
25 (NGDRM)	BLK (NGIST)	400	JL+NST-2	POISCF
$\begin{gathered} \text { **Double } \\ 1 S=10 \\ \text { NST }=2 \\ \text { IST }=1 \end{gathered}$	ision variables			

Table 7.2

Table of File Asaignments PTRAK Code

UNIT NO.	ARRAY NAME	BLOCK LENGTH \qquad (WDS)	$\begin{gathered} \text { NO. } \\ \text { BLOCKS } \\ \hline \end{gathered}$	SUBROUTINE WRITING BLOCK
12 (KTDRUM)	PART $(200,13)$	2600	JL	SMTER
17 (MDRUM)	$\begin{aligned} & \text { AMASS(IST, 50) } \\ & \text { RDUM(IST,4) } \\ & \text { APARM(10) } \end{aligned}$	5410	JL	DATAM
18(NBOUN)	RPART(IST, 2) PHPART(IST,2)	400	JL	SMTER
19(ISDRU)	SARRAY (8)	8	JL	SMTER
27 (MDRUK1)	AMASS (IST, 50) RDUM (IST,4) APARM(10)	5410	JL	DATAM
28(MDRUM2)	$\begin{aligned} & \text { AMASS }(1 S T, 50) \\ & \operatorname{RDUM}(I S T, 4) \\ & \operatorname{APARM}(10) \end{aligned}$	5410	JL	DATAM

Table 7.3

Table of File Assignments VAPDIF

UNIT NO.	ARRAY NAME	BLOCK LENGTH \qquad (WDS)	$\begin{gathered} \text { NO. } \\ \text { BLOCKS } \\ \hline \end{gathered}$	SUBROUTINE WRITING BLOCK
10 (IYDRM)	Y ($3,3, \mathrm{IST}, 10$)	45,000	JL	ADDC $\emptyset R$
11 (IFDEM)	FG(IST, 10)	5,000	JL.	SøLVE
12 (IXDRM)	X (3, IST, 10)	15,000	JL	ADDCøR
13(1TCめR)	$\operatorname{TC\emptyset R}(3,3, \mathrm{IST}, 10)$	45,000	JL	ADDCøR

8.0 DETAIL DESCRIPTION OF PTRAK CODE

8.1 Main Program/Flow Chart

The flow chart for the main program PTRAK is shown on Fig. 8.1. It consists of three major tasks: 1) Read input data and set up initial conditions for the droplet (subroutines INPUT, INTIAL, ØUTPUT); 2) Calculate the droplet trajectory, evaporation rate, and production of critical species (subroutines TRACK, SUMRY); and 3) Calculate the source terms for use by the VAPDIF (subroutine DATAM).

In task 1 , INPUT reads the input data according to the input format described in Section 4.2. INIT determines the initial droplet conditions (location, temperature, velocity, mass) which define the droplet classes by specifying number density distribution described in Section 4.7. ØUTPUT prints the input data and initial conditions.

The integration of the droplet equations for one step is accomplished by subroutine TRACK using a fine coordinate grid interpolated from the course coordinate grid calculated by C $\emptyset \emptyset R$. The outer $D \emptyset$ loop indexes the course grid where the J index corresponds to the J th streamwise coordinate (block) stored on file 9. The inner $\mathrm{D} \emptyset$ loop indexes the fine grid in KDS interpolated steps using the index JKDS. The integration takes place from JFIRST to JLAST in KDS*(JLAST-JFIRST) steps. At the present time there is no algorithm for varying the step size KDS. As the integration proceeds, the solution at each J th station for the droplet dependent variables is stored on file 12 and a summary of this data is stored on file 19. When the integration is complete, a summary of the solution is printed by SUMRY.

The execution of the third major task depends on the input option IøPT7. When $I \emptyset \mathrm{PT} 7>0$, subroutine DATAM searches through the solution files $(8,9,12)$ calculates the source terms for the production of fuel, the source terms for the production of critical species, and the drop in air temperature due to droplet evaporation. These results are stored for each mesh point on the course grid corresponding to the coordinate grid stored on file 9.

FIG. 8.1
FLOW CHART FOR MAIN PROGRAM PTRAK

8.2 Description of Modules by Major Task

A complete list and brief description of all the subroutines is given in Section 8.3. The flow chart for the main program PTRAK is shown on Fig. 8.1 and an overall description is given in Section 8.1. The description of the module functions will follow this flow chart. Only major computational tasks will be describea. Minor tasiks and Input/Output are self explanatory and will not be described.

Following through the flow chart Fig. 8.1, the first major task is performed by subroutine INTIAL which stores the crossection boundary at the initial station on unit NB ${ }^{\prime}$ UND, reads the flow field variables at the initial station from unit NDRUM, and calculates the initial droplet conditions by calling subroutine FN $\emptyset Z$. FNOZ specifies the initial conditions (Eqs. 4.7.1), and specifies the number density in phase space defined by (Eq. 4.7.2). Generally the binomial distribution (Eq. 4.7.3) calculated by FBIN is used. At the user's option, the Rosin-Rammier distribution (Eq. 4.7.10) may be used to determine the distribution of droplet diameters.

The second major task is integrating the droplet equations and calculating the droplet collision interactions. Subroutine TRACK performs this calculation for one time step. The flow chart for TRACK is given on Fig. 8.2 which shows the breakdown of the major task into eight smaller tasks. At the beginning of each station on the course grid (J station) IPR=1, the droplet data is read from unit KTDRUM and the flow field variables from unit NDRUM. For each step on the fine grid (JKDS>1) and IPR $\neq 0$, and the flow field and coordinate variables are interpolated.

The droplet class is defined by the index IJK calculated from the nested $D \emptyset$ loop indices. Thus for each droplet, the droplet motion is calculated by PARPAT, a determination is made if the droplet hits a boundary by WALLRB, and depending on the options IøPT1 and IBREK, a determination is made on whether the droplet shatters by BREKUP, and whether the droplet is a member of the two largest classes by L $\emptyset C G R D$. When the solution for all the droplets at the new time step is determined, $\mathrm{L} \varnothing \mathrm{G} \subset \mathrm{L}$ examines the two largest classes and applies the collision model. The solution is then printed by subroutine PRINT and stored by subroutine SMTER.

The equations of droplet motion are contained in PARPAT which are integrated for one time step using the predictor corrector method described in Section 4.11. Table 8.1 shows a breakdown of the tasks performed by PARPAT. FINTP locates the droplet on the computational grid and interpolates the flow field variables at that point. FPR \emptyset, GPR \emptyset P, and PPR \emptyset P calculates the thermodynamic and transport properties for the film, air, and, liquid respectively. DIFFUS calculates the mass diffusion coefficient (Eq. 4.4.16), PøLY is a polynomial interpolation, $\mathrm{C} \emptyset \mathrm{XCH}$ is the Cox chart (see Section 4.5). DRAGF contains the drag coefficient correlation (Eq. 4.2.8) and NUSSET contains the Nusselt number correlations (Eqs. 4.4.1, 4.4.2) for heat and mass transfer. VAHR calculates the heat and mass transfer rates (Eqs. 4.3.4 and 4.3.1). The equations of motion (Eqs. 4.2.1 through 4.2.6) are programmed directly
using DRAGF. The role of change of droplet temperature (Eq. 4.3.3) and droplet diameter (Eq. 4.3.9) is calculated by LTEMP and DDIAM respectively. When the predictor corrector iteration converges (Eq. 4.11.10) the time step is known and the calculation of critical species is made. X2INIT calculates the initial distribution of critical species in the film surrounding the droplet. X2INIT requires VAlir and PFILM to calculate the local partial pressure. XX2 integrates the rate equation (Eq. 8.3.1) using XRATE. X2MASS integrates over the film volume to obtain the mass of critical species (see Eq. 8.2.6). Finally the total heat input to the droplet (see Eq. 8.2 .11) is calculated.

The third task in TRACK (Fig. 8.2) is to examine the droplet to see if it hits a boundary using subroutine WALLRB. For purely elastic wall rebound, the velocity component normal to the wall is changed in sign. For periodic boundary conditions, a droplet leaving one boundary enters on the opposite boundary. A portion of the droplets may stay on the wall and form a liquid film. These conditions are calculated by subroutine BøUNCE. BøUNCE determines the fraction of droplets that remain on the wall using the models described in Section 4.10. of the fraction that remains on the walls, some portion will evaporate depending on the wall temperature and partial pressure calculated from the Cox chart using subroutine CøXCHT as described in Section 4.10.

The next step is to determine if a droplet shatters using subroutine BREKUP and the models discribed in Section 4.9. The droplet shattering model is applied to all classes. After shattering the droplets are counted with the neare't class rather than forming new classes. However, the two largest classes in each computational grid must be recalculated using LøCGRD.

Once the new droplets conditions are established for all classes (IJK loop completed), the droplet collision model L $\emptyset G C \emptyset L$ can be applied. L $\emptyset G C \emptyset L$ searches through the computational grid and determines if the two largest classes are in the same grid volume. If they ure in the same grid volume, subroutine CøLLDE determines if a collision occurs, and the conditions after a collision using the model described in Section 4.8. A fraction of the droplets may coalesce and a fraction may rebound with elastic collisions. of those that rebound, subroutine C \varnothing LLSN calculates the approach velocity along the 1 ine of centers and subroutine CøLDYN calculates the rebound velocity. Subroutine CøLLSN contains the velocity transformation matrix and its inverse to go from the computational coordinates to the collision coordinates. Following tine collision, the new properties of the classes are calculated in CøLLDE. The solution is printed by PRINT and stored on files NBQUND, ISDRV, KTDRUM, by SMTER at each $\mathrm{J}^{\text {th }}$ station of the course computational grid. This last step completes the calculation in TRACK.

Returning to PTRAK, Fig. 8.1, the calculation continues until the outer D \emptyset loop is completed. An output summary is printed for all J stations on the course grid by subroutine SUMRY. Depending on the input option IøPT7, the source terms are calculated by DATAM. DATAM searches through all the solution files and calculates
the source terms \dot{W}_{f} and \dot{W}_{f} for the vapor diffuaion equation (Eq, 5.2.1) ualing Eqs. 4.7.14 and 4.7.15. This reault is atored on Eile rDRUM. It then celculates the source term S_{d} for the critical apecies equation (Eq. 8.2.1) uaing Eq. (8.2.6) and stores the result on file MDRUM. Finally it calculates the temperature drop due to evaporization and stores the results on file MDRUM2. At this point the calculation in PTRAK is complete.

FIG. 8.2
FLOW CHART FOR SUBROUTINE TRACK

Table 8.1
Tasks in Subroutine PARPaT

Task
Aux. Subroutines

FPR@P
GPRDP
PPR ${ }^{\text {P }}$
DRAGF
NUSSET
VAHR

DTEMP
DDIAM
X2INIT
locate droplet on grid
find local air flow conditions
film properties (Eqs. 4.4.6 to 4.4 .20)
air properties
liquid properties (Eqs. 4.4 .21 to 4.4 .28)
DIFFUS
PøLY
POLY, CøXCH
drag coeff. (Eq. 4.2.8)
Nusselt No. (Eq. 4.4.1, 4.4.2)
determine heat transfer (Eq. 4.3.4)
determine mass transfer (Eq. 4.3.1)
Equations of motion (Eqs. 4.2.1 to 4.2.6)
Rate of temperature change (Eq. 4.3.3)
Rate of diameter change (Eq. 4.3.9)
Initialize critical species
Integrate rate equation (Eq. 8.3.1)
Integrate mass (bracket Eq. 8.2.6)
Integrate bracket (Eq. 8.2.11)

8.3 List of Subroutines in PTRAK

ALJPØT	Evaluate Leonard Jones Potential collision integral
BLKDAT	Block data
BLKRED	Read/Write data on files
B \emptyset UNCE	Wall rebound model
BREKUP	Droplet Shattering model
CØLDYN	Calculate droplet velocity after collision
COLLDE	Droplet Collision model
CØLLSN	Calculate velocity transformation matrix
$C \emptyset \emptyset R$	Read coordinate data
CDXCHT	Determine vapor pressure from Cov chart
DATAM	Store fuel sources for VAPDIF
DDIAM	Calculate rate of change in droplet diameter
DIFFUS	Calculate mass diffusivity
DISTEM	Determine distillation temperature
DRAGF	Calculate droplet drag
DTEMP	Calculate rate of change of droplet temperature
FBIN	Calculate binomial distribution
FINTP	Interpolate flow field of air
$F N \emptyset Z$	Calculate initial conditions for droplets
FPRDP	Determine fluid properties of film
GAMFUN	Calculate Gamma function
GPRØP	Determine gas properties for droplet

INPUT	Read Input data
INTIAL	Initialization of particle classes
L®CGRD	Determine two largest classes
LDGC¢L	Logic for Droplet collision model
LDOK	Interpolation for table lookup
NUSSET	Calculate Nusselt number
¢UTPUT	Write initial input conditions
PARPAT	Integrate particle path equations
PFILM	Calculate local film properties
PdLY	Perform polynomial curve fit
PPRQP	Determine fluid properties of droplets
PRINT	Print class properties at each station
PTRAK	Main program
SMTER	Calculate summary terms
SUMRY	Write summary output
TRACK	Track droplet particle classes
VAHR	Calculate heat and mass transfer rates
WALLRB	Logic for wall rebounds
XRATE	Calculate net production of X_{2}
XX2	Calculate X_{2} for one time step
X2INIT	Initialize X_{2} mole concentration
X2MASS	Calculate mass of X_{2} in droplet

8.4 List of C $\mathrm{C} M \mathrm{M} \emptyset \mathrm{N}$ BLøCK Variables

The CØMM Alphabeticas listing is by labeled CQMM is given and a genesal description of the variables in the group. Following this is a detailed list of variables in the order in which they appear in the COMMON BLøCK. C $\varnothing M M$ M BLØCK variables for the ADD code are given in Ref. 4.
CDMM $\varnothing \mathrm{N} / \mathrm{AC} \Phi \mathrm{NS} / \quad \mathrm{ADD}$ Code Variables (Ref: 4)

COMMON / APAR		Droplet Input Conditions
$\operatorname{RNZCLI}(\mathrm{N}, 1)$	r	Injector radius (cm)
$\operatorname{RNZCLI}(\mathrm{N}, 2)$	z	Injector axial lecation (cm)
$\operatorname{RNZCLI}(\mathrm{N}, 3)$	ϕ	Injector circumferen:ial location (rad.)
RNZI (N)		Radial displacement of r (cm)
ALPHI (N)	α	Angle between normal and streanwise (deg)
BETAI (N)	B	Angle between tangential and streamwise (deg)
VMEANI (N)	V	Magnitude of velocity ($\mathrm{M} / \mathrm{sec}$)
DPRTI (N)	D_{L}	Mean diameter of droplet (micron)
DDPRTI (N)	δD_{L}	Variance of dr'splet diameter (micron)
NNøZ		Number of ejer:tors
DALP (N)	$\delta \alpha$	Variance in a (deg)
DBET (N)	δB	Variance in β (deg)
ILøC		Number of ejectors
IVS		Number of velocity classes
IPHI		Number of α classes
ITHE		Number of B classes
LDIA		Number of droplet diameter classes
DVMI (N)	¢V	Variance of Mean Velocity

C1, C		Wall rebound probability constants
RTIP	${ }^{\text {r }}$	Tip radius (cm)
RHVB	r_{T}	Hub radius (cm)
LPHI		Number of ${ }^{\text {grid }}$ goint
DPHI	$\Delta \phi$	Increment in (rad)
LPART		Index in \dagger
PHIL	ϕ_{L}	Left \dagger boundary (rad)
PHIR	ϕ_{r}	Right ϕ boundary (rad)
RPART (1,1)	$\mathrm{r}_{\mathbf{t}}(\boldsymbol{\text { ¢ }}$)	Tip boundary (cm)
RPART (1,2)	$\mathrm{r}_{\mathrm{H}}(\boldsymbol{\phi})$	Hup boundary (cm)
PHPART ($\mathrm{K}, 1$)	$\phi_{L}(\underline{ }$)	Left \& boundary (rad)
PhPART ($\mathrm{K}, 2$)	$\phi_{r}(\boldsymbol{r})$	Right \& boundary (rad)

COMMON/BPART/ Droplet Input Thermodynamic Properties

RHDLPI (I)	ρ_{L}	Droplet density ($\mathrm{gm} / \mathrm{cm}^{3}$)
$\operatorname{TEMPI}(\mathrm{I})$	T_{L}	Droplet temperature (${ }^{\circ} \mathrm{K}$)
$\operatorname{DLP(I)}$	D_{L}	Droplet diameter (micron)
$\operatorname{KPART}(\mathrm{N})$		Radial index for $\mathrm{N}^{t h}$ droplet
$\operatorname{PERLDC(I)}$	P_{L}	Percentage of fuel

JPLL

COMMON/CiRRAY/ Thermodynamic Polynomial Coeff.

$\operatorname{C@EFP}(1, \mathrm{I})$	${ }^{\text {A }}$ I	Droplet density ($\mathrm{gm} / \mathrm{cm}^{3}$)
$\operatorname{CDEFF}(2, I)$	A_{I}	Droplet heat capacity ($\mathrm{cal} / \mathrm{cm} /{ }^{\circ} \mathrm{K} / \mathrm{sec}$)
$\operatorname{CDEFP}(3,1)$	${ }^{A_{I}}$	Droplet viscosity (gm/cm/sec)
$\operatorname{CDEFP}(4, \mathrm{I})$	A_{I}	Gas heat capacity ($\mathrm{cal} / \mathrm{gm} /{ }^{\circ} \mathrm{K}$)
$\operatorname{COEFP}(5,1)$	A_{I}	Gas conductivity ($\mathrm{cal} / \mathrm{cm} /{ }^{\circ} \mathrm{K} / \mathrm{sec}$)
$\operatorname{CDEFP}(6,1)$	A_{I}	Gas Viscosity ($\mathrm{gm} / \mathrm{cm} / \mathrm{sec}$)
$\operatorname{CDEFP}(7,1)$	A_{I}	
$\operatorname{COEFP}(8, \mathrm{I})$	A_{I}	Air conductivity ($\mathrm{cal} / \mathrm{cm} /{ }^{\circ} \mathrm{K} / \mathrm{sec}$)
CDEFP $(9,1)$	${ }^{\text {A }}$ I	Air viscosity (gm/cm/sec)
$F(T)$	$\mathbf{A}_{\mathbf{I}}$	

COMMON CCRATE Parameters for Critical Sriecies

$A B, A F$	A_{b}, A_{f}
$E B, E F$	E_{b}, E_{f}

ALPB, ALPF	α_{b}, α_{f}	
BETB,	CETF	β_{b}, β_{f}
GAMB, GAMF	γ_{B}, γ_{B}	(Eq. 8.3.1)
CARBN	δ	

MOLE1,MøLE2 Molecular weights

BRAD
YO2

DELM2

LRLP

Number of points in film

DELTB, DELTF	$\delta_{b} \delta_{f}$	Constants for rate equation
ANUB, ANUF	$\nu_{b} \nu_{f}$	(Eq. 8.3.11)

CDMMOM /CCX21/ Mole Concentration Critical Species

X21
$X_{2}(t) \quad$ Mole concentration (mole/cm $)^{3}$
X22(I)
DX2DO(I)
DX2DT(I)

C $\triangle M M$ N / COLLVA/ Index for Largest Class
KGEのM(K,L,1)
KGEøM(K,L,2)
Where $K=r$ grid index
$\mathrm{L}=\phi$ grid inde

C $\triangle M M$ N /CDNST/ ADD Code (Ref. 4)

COMMON / CONVER/ Constants

GC
g
JCøNST
$R \emptyset C \emptyset N$
$R \emptyset C \not \subset \mathrm{NP} \quad R$
Index for largeat class

Index for second largest class

P2CH	P_{2}	Vapor pressure (atm)
coxcar (1, 1)	η	Carbon number
$\operatorname{CDXCAR}(2,1)$	T_{1}	$\left(\mathrm{T}\left(\zeta, \mathrm{P}_{1}\right)\left({ }^{\circ} \mathrm{K}\right)\right.$
$\operatorname{CDXCAR}(3,1)$	T_{2}	$\mathrm{T}\left(\zeta, \mathrm{P}_{2}\right)\left({ }^{\circ} \mathrm{K}\right)$
	Dependent droplet variables	
$\operatorname{PART}(1,1)$	U_{s}	Streamwise velocity ($\mathrm{m} / \mathrm{sec}$)
$\operatorname{PaRT}(1,2)$	$\mathrm{u}_{¢}$	Tangential velocity (m/sec)
PART ($\mathrm{I}, 3$)	U_{n}	Normal velocity (m/sec)
PART (1,4)	n	Normal coordinate
$\operatorname{PART}(1,5)$	ϕ	Circumferential coordinate
$\operatorname{PaRT}(1,6)$	D_{L}	Droplet diameter (micron)
PART (1,7$)$	T L	Droplet temperature (${ }^{\circ} \mathrm{K}$)
PART (1,8)	r	Droplet radius (cm)
$\operatorname{PART}(1,9)$	z	Droplet axial distance (cm)
PART ($\mathrm{I}, 10$)	t	Droplet time (sec)
$\operatorname{PART}(1,11)$	f	Probability
$\operatorname{PART}(1,12)$	M_{2}	Mass of critical species (gm)
PART $(1,13)$	Q	Total heat load (cal)

COMMN/CURVE/ Distilation curve
idstil

$\operatorname{DISCUR}(1,1)$	P_{e}	Percent evaporated
$\operatorname{DISCUR}(2, \mathrm{I})$	T_{b}	Temperature $\left({ }^{\circ} \mathrm{K}\right)$

CDYMON /DRED1/ ADD code (Ref. 4)
CDMMDN /DSKLDC/ ADD code iRef. 4)
CDMOMDN /DUCDUT/ ADD code (Ref. 4)
CDMMDN /DUCTIN/ ADD code (Ref. 4)
C $\triangle M M$ MN /FILVAR/ Film thermodynamic properties

MF	M_{m}	Film molecular weight
RHøF	$\rho_{\text {m }}$	Film density ($\mathrm{gm} / \mathrm{cm}^{3}$)
CPF	$C_{p m}$	Film heat capacity ($\mathrm{cal} / \mathrm{gm} /{ }^{\circ} \mathrm{K}$)
KF	k_{m}	Film thermal conductivity ($\mathrm{cal} / \mathrm{cm} /{ }^{\circ} \mathrm{K} / \mathrm{sec}$)
MUF	${ }^{\prime \prime}$	Film viscosity ($\mathrm{gm} / \mathrm{cm} / \mathrm{sec}$)
DMASSF	m	Film mass diffusivity ($\mathrm{cm}^{2} / \mathrm{sec}$)
CFF	C_{f}	Fuel mass fraction
CGF	C_{a}	Air mass fraction
SIGP6F	σ_{m}	Film force constant (${ }^{\circ}$)
OMEGF	Ω^{*}	Collision integral
YINF	\mathbf{Y}_{∞}	Air mole fraction
YGF	$1-Y_{m}$	Average film air mole fraction
YPF	Y_{m}	Average film fuel mole fraction
YPSF	$Y_{f, s}$	Fuel mole fraction at droplet surface
CKPGF	$(\varepsilon / \kappa)_{m}$	Force constant film (${ }^{\circ} \mathrm{K}$)
TSTARF	$\mathrm{T}^{\text {* }}$	Dimensionless temperature
YPINF	$\mathrm{Y}_{\mathrm{f}, \infty}$	Mole fraction of air at film edge
MINF	M_{a}	Molecular weight air

C $\triangle M M \emptyset$ N /MASSD/ Source terms for VAPDIF code

$\operatorname{AMASS}(\mathrm{K}, \mathrm{L})$	$\stackrel{\circ}{\mathrm{w}}_{\mathrm{f}}, \mathrm{S}_{\mathrm{d}}, \Delta \mathrm{T}$,	Source terms for VAPDIF
$\operatorname{RDUM}(\mathrm{K}, \operatorname{ISIDE})$	$\stackrel{\circ}{\mathrm{w}}_{\mathrm{fw}}$,	Wall source terms for VAPDIF

APARM(1)	Δ	Circumferentiel step size (rad)
APARM(2)	LPHT	, No. circumferential steps
APARM(3)	$W_{f v}$, Weight flow fuel (gm/sec)
APARM (4)	$\mathrm{W}_{\text {fa }}$, Weight flow alr. (gn/sec)
APARM(5)	JLAST	, Number of blocks
APARM(6)	I¢PT3	, iniut option
APARM(7)	JC $¢$ UN	, Block routine
COMMON /MISCEL/	Miscellaneous variat Les	
VEL	v	Air velocity ($\mathrm{m} / \mathrm{sec}$)
TEMG	Ta	Air temperature (${ }^{\circ} \mathrm{K}$)
PRESG	P_{a}	Air pressure (atm)
RHøG	P_{a}	Air density ($\mathrm{gm} / \mathrm{cm}^{3}$)
COMM	Droplet Summary	
FMASS	$\stackrel{\circ}{\mathrm{w}}_{\mathrm{L}}$	Fuel flow rate (gm/sec)
FSUM	N_{T}	No. fuel droplets/sec ($1 / \mathrm{sec}$)
SMDD		SMD denominator
SMDN		SMD numerator
SMD	SMD	Sauter mean diameter (microns)
QF	$\stackrel{\circ}{W}^{\text {L }}$	Liquid fuel flow rate (gm/sec)
QFO	$\stackrel{\circ}{\mathrm{W}}_{\mathrm{LO}}$	Initial liquid fuel flow rate ($\mathrm{gm} / \mathrm{sec}$)
SARRAY (1)	z	Axial location (cm)
SARRAY (2)	SMD	Sauter mean diameter (micron)
SARRAY (3)		\% fuel liquid

SARRAY(4)	\% fuel at wall that is liquid
SARRAY(5)	\% fuel at wall that is vapor
SARRAY(6)	\% fuel in vapor state
SARRAY(7)	\% fuel evaporated
$\operatorname{SARRAY(8)}$	Flow rate of vaporized fuel
$\operatorname{SARRAY(9)}$	Fuel/Air ratio

CめMMøN /NUSVAR/ Nusselt number variables

NUH	Nu_{h}	Nusselt number heat transfer
NUM	Nu_{m}	Nusselt number mass transfer
REN	$\operatorname{Re}_{\mathrm{D}}$	Reynolds number of droplet
PRN	Pr	Prandtle number
SCN	Sc	Schmidt number

COMMON /PARVAR/ Droplet thermodynamic properties

MP	M_{L}	Molecular weight fuel
TCP	T_{c}	Critical temperature of fuel (${ }^{\circ} \mathrm{K}$)
PCP	P_{c}	Critical pressure of fuel (atm)
SIGP	${ }^{\circ} \mathrm{L}$	Force constant (\AA)
CKP	$(\varepsilon / k) L$	Force constant (${ }^{\circ} \mathrm{K}$)
LAMBP	${ }^{\text {L }}$	Heat os vaporization (cal/gm)
SP	S	Surface tension (dyne/cm)
PVP	$\mathrm{P}_{\mathrm{f}, \mathrm{s}}$	Vapor pressure fuel (atm)
TMP	T_{m}	Film temperature (${ }^{\circ} \mathrm{K}$)
RHめLP	${ }^{\rho}$	Fuel liquid density ($\mathrm{gm} / \mathrm{cm}^{3}$)
CPLP	$\mathrm{C}_{\text {PL }}$	Fuel liquid heat capacity ($\mathrm{cal} / \mathrm{gm} /{ }^{\circ} \mathrm{K}$)

MULP	μ_{L}	Fuel 1iquid viscosity $(\mathrm{gm} / \mathrm{cm} / \mathrm{sec})$
CPVP	$C_{p v}$	Fuel vapor heat capacity $\left(\mathrm{cal} / \mathrm{gm} /{ }^{\circ} \mathrm{K}\right)$
KVP	k_{v}	Fuel vapor thermal conductivity $\left(\mathrm{cal} / \mathrm{cm} /{ }^{\circ} \mathrm{K} / \mathrm{sec}\right)$
MUVP	μ_{v}	Fuel vapor viscosity $(\mathrm{gm} / \mathrm{cm} / \mathrm{sec})$

C $\triangle M M \emptyset \mathrm{~N}$ /QM $\mathrm{MN} /$
Q $Q L \mathrm{LD}(\mathrm{I})$
$\stackrel{\circ}{q}_{\text {si }} \quad$ Heat transfer rate (cal/sec)
DMDTO(I) $\quad(\mathrm{dm} 2 / \mathrm{dt})_{i} \quad$ Mass rate of change of critical species

C $\Phi M M \Phi$ /REALIN/ ADD code (Ref. 4)
C $\square M M \phi N$ /SVARB/ ADD code (Ref. 4)

8.5 List of Local Variables

A list of selected local variables appears below. These variables are alphabetically listed by subroutine name.

ALJPøT

TS	T^{*},	Dimensionless temperature
ALJPDT	$\Omega^{*} \quad, \quad$ Collision integral	
BLKDAT	ADD code (Ref. 4)	
$\underline{\text { BLKRED }}$	ADD code (Ref. 4)	

BøUNCE
IJK
Class index
IB@UN
Wall index
SP S Surface tension (dyne/cm)
TEMMIN Minimum droplet temperature $\left({ }^{\circ} \mathrm{K}\right)$
TEMMAX Maximum droplet temperature $\left({ }^{\circ} \mathrm{K}\right)$
ND

PRB
WFCøLL
WFEVDP
WFEVAT
WFLIQT
$\frac{\text { BREKUP }}{\text { IJK }}$
IPREK
A, B
AK1, AK2

N_{T}

Number of droplets ($1 / \mathrm{sec}$)
Probability of wall rebound
Amount of fuel/area ($\mathrm{gm} / \mathrm{cm}^{2}$)
Amount of fuel evaporated/area ($\mathrm{gm} / \mathrm{cm}^{2}$)
Total fuel evaporated (gm)
Total fuel on wall (gm)

Droplet class index
Flag indicates shattering
Constant Wolfe, Anderson shattering model
Aerodynamic drag constants

CD	C_{D}	Drag coefficient $\mathrm{C}_{\mathrm{D}}{ }^{-1}$
DK3		Shattering Model constants DK3-136
FK1, FK2		Friction drag constants FK1=2, FK2=4
RHøLP	ρ_{L}	Density of droplet (gm/cm ${ }^{3}$)
SP	S	Surface tension ($\mathrm{dyn} / \mathrm{cm}$)
VEL	$\|v\|$	Absolute velocity (m/sec)
DSHAT		Droplet diameter after shattering (micron)
ND	N_{T}	Total number density after shattering ($1 / \mathrm{sec}$)
TEST1		Time of aerodynamic breakup (sec)
TEST2		Time of friction breakup (sec)

CDLDYN
IP1,IP2
VELI1, VEL12, VEL13 $\overrightarrow{\mathrm{v}}_{\mathrm{J}}$
VEL21,VEL22,V23 $\vec{\nabla}_{\mathrm{k}}$
AMASS1,AMASS2
m_{J}, m_{k}
E,EI
E, E^{-1}
VCøL1, VCøL2
UC1,UC2
VCL, VC2
\vec{v}_{J}, \vec{V}_{k}
Index for colliding classes
Velocity after collision ($\mathrm{Vs}, \mathrm{Vn}, \mathrm{V} \phi$) ($\mathrm{m} / \mathrm{sec}$)
Velocity after collision ($\mathrm{Vs}, \mathrm{Vn}, \mathrm{V} \phi$) ($\mathrm{m} / \mathrm{sec}$)
Droplet mass before collision (gm)
Velocity transformation matrix
Velocity in collision coordinates ($\mathrm{m} / \mathrm{sec}$)
$\mathrm{v}_{\mathrm{CJI}}, \mathrm{v}_{\mathrm{CK} 1}$
$\mathrm{v}_{\mathrm{CJ} 2}, \mathrm{v}_{\mathrm{CK} 2}$
Velocity before collision (m/sec)
Velocity after collision ($\mathrm{m} / \mathrm{sec}$)
CøLLDE

K, J
RC
$\mathrm{XC}, \mathrm{YC}, \mathrm{ZC}$
R_{C}
X_{c}, Y_{c}, Z_{c}

Droplet index
Distance between droplets (cm)
Relative coordinates (cm)

COLLSN

TP1,1P2		Droplet index
$\mathrm{Xc}, \mathrm{Yc}, \mathrm{Zc}$	$\mathrm{X}_{c}, \mathrm{Y}_{\mathrm{c}}, \mathrm{Z}_{c}$	Relative cartesian coordinates (cm)
A(1, J)		Transform matrix streamline to cylindrical
B (I, J)		Transform matrix cylindrical to cartesian
$C(1, J)$		Transform matrix streamline to cartesian
D (I, J)		Transform matrix cartesian to droplet
$E(1, J)$	E	Transform matrix streamline to droplet
EI($1, \mathrm{~J}$)	E^{-1}	Transform matrix droplet to streamline
$C D Q R$	ADD code	
CDXCHT		
PRESS	P_{v}	Vapor pressure (atm)
BCøEF	β_{n}	Cox chart constants
TEM1	T_{L}	Droplet temperature
PERCT	P_{c}	Percent evaporated
DATAM		
$1 \emptyset \mathrm{P}$		Module switch
JCめUN		Block counter
DDIAM		
WDØTSF	$\stackrel{\circ}{{ }^{\circ}}{ }_{L}$	Vaporization rate (gm/sec)
DRDT	$d\left(f_{L}\right) / d t$	Rate of density change ($\mathrm{gm} / \mathrm{cm}^{3} / \mathrm{sec}$)
DLP	D_{L}	Droplet diameter (micron)
DDIAM	$d\left(D_{L}\right) / d t$	Rate of diameter change (micron/sec)

DIFFUS

TEMP	T	Temperature $\left({ }^{\circ} \mathrm{K}\right)$
PINF	$\mathrm{P}_{\mathbf{a}}$	Air pressure (atm)
DIFFUS		Mass diffusion coefficient $\left(\mathrm{cm}^{2} / \mathrm{sec}\right)$

DISTEM

PER
DISTEM
DRAGF
RH@
DLP
TINF
PINF
VINF
VPART
VEL
CD
DTEMP
QNET
DLP
DTEMP
FBIN
IXX
JXX
FBIN
P_{e}
TD
$\rho_{L} \quad$ Droplet density ($\mathrm{gm} / \mathrm{cm}^{3}$)
D_{L}
Ta
P_{a}
v_{i}
v_{i}
ΔV
C_{D}
Drag coefficient
Droplet diameter (micron)
Air temperature (${ }^{\circ} \mathrm{K}$)
Air preasure (atm)
Air velocity ($m / s e c$)
Droplet velocity (m/sec)
Relative velocity (m/sec)

Net heat flux (cal/sec)
Droplet diameter (micron)
Rate of temperature change (${ }^{\circ} \mathrm{K} / \mathrm{sec}$)
$d T / d t$

$$
\text { IXX }{ }^{\text {th }} \text { class }
$$

Total number of classes
Probability

FINTP		
ANE	n	Normal coordinate
vV		Metric coefficient
vS, VP	v_{s}, v_{ϕ}	Air velocity components (m/sec)
Rø	ρ_{a}	Air density ($\mathrm{gm} / \mathrm{cm}^{3}$)
TP	Ta	Air temperature (${ }^{\circ} \mathrm{K}$)
PS	P_{a}	Air pressure (atm)
RB, 2 B	$r, 2$	Coordinates of droplet (cm)
RSB, RNB		Direction cosines of coordinates
VSB, VNB		Curvatures of coordinates
KP		Streamline index for droplet
M		Index for solution variables
FNDZ		
ANP	n	Normal coordinate
HEIT	H	Duct height (cm)
FL, FV, FT, FP, FD	$\begin{aligned} & f_{L}, f_{v}, f_{t}, f_{p}, \\ & f_{0} \end{aligned}$	Probability functions
Pr	¢	Circumferential location (rad)
RP, ZP	r,z	Droplet coordinates (cm)
VSP, VNP, VPP	$\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{p}}$	Droplet velocity (m/sec)
FPR@P		
PINP	Pa_{a}	Air pressure (atm)
GAMFUN		
ARG	X	Argument
GAMFUN	$\Gamma(\mathrm{X})$	Gamma Function

GPRDP CPG

$$
C_{p a}
$$

Air heat capacity (cal/gm/ ${ }^{\circ} \mathrm{K}$)
KG
k_{a}
Air thermal conductivity (cal/ $\mathrm{cm} /{ }^{\circ} \mathrm{K} / \mathrm{sec}$)
μ_{a}
Air viscosity ($\mathrm{gm} / \mathrm{cm} / \mathrm{sec}$)
INPUT See Section 5.2
INTIAL See COMMN BLOCK variables
LOCGRD
J.JK
L. CGCDL

$\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z1}$	$\mathrm{X}_{\mathrm{J}}, \mathrm{Y}_{\mathrm{J}}, \mathrm{Z}_{\mathrm{J}}$	Cartesian coordinates $\mathrm{J}^{\text {th }}$ droplet (cm)
$\mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z2}$	$\mathrm{X}_{\mathrm{K}}, \mathrm{Y}_{\mathrm{K}}, \mathrm{Z}_{\mathrm{C}}$	Cartesian coordinates $\mathrm{K}^{\text {th }}$ droplet (cm)
$\mathrm{XC}, \mathrm{YC}, \mathrm{ZC}$	$\mathrm{X}_{\mathrm{C}}, \mathrm{Y}_{\mathrm{c}}, \mathrm{Z}_{\mathrm{C}}$	Relative cartesian coordinates (cm)
RC	R_{C}	Distance along line of cencer (cm)

LDQK

X(I)
Y(I)
XIN
YøUT
KK

фUTPUT Self explanatory
PARPAT

VS1,VN1,VP1	$\mathrm{V}_{\mathbf{s}}, \mathrm{V}_{\mathrm{n}}, \mathrm{V}_{\boldsymbol{\phi}}$	Droplet velocity components at $\mathrm{t}(\mathrm{m} / \mathrm{sec})$
AN1	n	Normal coordinate at t
P1	ϕ	Circumferential location at t (rad)
DLP1	D_{L}	Droplet diamater at t (micron)

TLP1	T_{L}	Droplet temperature at $t\left({ }^{\circ} \mathrm{K}\right)$
VS2,VN2, YP2	$v_{s} v_{n} v_{\phi}$	Dropiet velocity components t+dt (m/sec)
AN2	n	Normal coordinate at t+dt
P2	¢	Circumferential location t+dt (rad)
DLP2	D_{L}	Droplet diameter at t+dt (micron)
TLP2	T_{L}	Drcplet temperature at $\mathrm{t}+\mathrm{dt}\left({ }^{\circ} \mathrm{K}\right)$
RB2, ZR2	r, 2	Droplet coordinates at $t+d t(\mathrm{~cm})$
RHøLPO	${ }^{\circ} \mathrm{LO}$	Initial droplet density ($\mathrm{gm} / \mathrm{cm}^{3}$)
DLPO	$\mathrm{D}_{\text {LO }}$	Initial droplet diameter (micron)
KP	KP	Streamline index
DT2	Δt	Time increment
QS1	$\stackrel{\circ}{\text { ¢ }}$	Droplet heat transfer rate at t ($\mathrm{cal} / \mathrm{sec}$)
X2M2	m_{2}	Mass of critical species at t+dt (gm)
QHEAT1	Q_{1}	Total heat added to droplet at t (cal
Qheat2	Q_{2}	Total heat added to droplet at t+dt (cal)
DM1	$d(m 2) / d t$	Rate of change of mass at $t(\mathrm{gm} / \mathrm{sec})$
PFILM		
RL	${ }^{2} L^{+b}$	Droplet film radius (micron)
RLP	${ }^{\text {r }}$	Droplet radius (micron)
TLP	T_{L}	Droplet temperature (${ }^{\circ} \mathrm{K}$)
PINF	$\mathrm{P}_{\mathbf{a}}$	Air pressure (atm)
PF	P_{f}	Vapor pressure fuel (atm)
TF	${ }^{1} \mathrm{f}$	Temperature of fuel (${ }^{\circ} \mathrm{K}$)
XF	X_{f}	Mole concentration of fuel (mole/cm ${ }^{3}$)

FPLY

1		Property index
TEM	T	Temperature ${ }^{\circ} \mathrm{K}$
PPRQP		
TINF	$\mathrm{T}_{\mathbf{a}}$	Air temperature (${ }^{\circ} \mathrm{K}$)
TLP	T 1	Droplet temperature (${ }^{\circ} \mathrm{K}$)
DLP	D_{1}	Droplet diameter (micron)
RHDLPO	0 Lo	Initial droplet density ($\mathrm{gm} / \mathrm{cm}^{3}$)
DPLo	${ }^{1}{ }_{L 0}$	Initial droplet diameter (micron)
PRINT	Self ex	
PTRAK		
FMC:		Conversion factor (cm/ft)
RHUB, ZHUB	${ }^{\text {H }} \cdot{ }^{\text {z }} \mathrm{H}$	I1) wall conidinates (cm)
RTIP.ZTIP	$\mathrm{rab}_{i}, \mathrm{z}_{\mathrm{r}}$	OD wall coordinates (cm)
SMTER		
WAIR	$\stackrel{\circ}{\mathbf{W}}_{u}$	Weight flow air (gm/sec)
WFEVAT		Weight flow gas (gm/sec)
WFLIQT	$\stackrel{\circ}{\mathrm{W}} \mathrm{L}$	Weight flow liquid droplets (gm/sec)
Q	$\stackrel{\circ}{\mathbf{W}}_{\text {LO }}$	Initial fuel flow (gm/sec)
2	z	Axtal location (cm)
SUMRY Se	anatory	

TRACK

IDIA	No. diameter classes
ILØC	No. location classes
IPHI	No. normal angle classes
ITHE	No. asmutial angle classes
IVS	No. velocity classes
IJK	Class index

QNET	$q_{s}{ }^{-w_{s}}$	Net heat transfer rate (cal/sec)
WIDTSF	$\begin{gathered} \circ \\ { }^{\mathbf{w}} \end{gathered}$	Vaporization rate (gm/sec)
TLP	T_{L}	Droplet temperature (${ }^{\circ} \mathrm{K}$)
DLP	D_{L}	Droplet diameter (micron)
TINF	T_{a}	Air temperature (${ }^{\circ} \mathrm{K}$)
PINF	P_{a}	Air pressure (atm)
WALLRB		

IJK

XRATE

T

Xl

X2

X 02

Droplet class index

Temperature $\left({ }^{\circ} \mathrm{K}\right)$
Mole concentration species 1 (mole/cm ${ }^{3}$)
Mole concentration species 2 (mole/cm ${ }^{3}$)
Mole concentration oxygen (mole! cm^{3})
$\underline{X X 2}$

DLP1	D_{L}	Droplet diameter at t (microns)
DT2	Δt	Time step (sec)
TLP	T_{L}	Droplet temperature (${ }^{\circ} \mathrm{K}$)
PINF	P_{a}	Air pressure (atm)
TINF	T_{a}	Air temperature (${ }^{\circ} \mathrm{K}$)

X2INIT

DLP	D_{L}	Droplet diameter (micron)
TLP	T_{L}	Droplet temperature (${ }^{\circ} \mathrm{K}$)
PINF	P_{a}	Air pressure (atm)
TINF	T_{a}	Air temperature (${ }^{\circ} \mathrm{K}$)
X2M2	M_{2}	Mass critical species (gm)
QITøT	Q_{L}	Total heat added to droplet (cal)

X2MASS
BRAD
DLP1, DLP2
Dn2DT
$\left(r_{d}+b\right) / r_{d}$
Film thickness ratio

DT2
D_{L}
Droplet diameter at t Rt+dt (micron)

DT2
$\mathrm{dM}_{2} / \mathrm{dt}$
Rate of mass change critical species ($\mathrm{gm} / \mathrm{sec}$)
d
Time step sec

9.0 DETAIL DESCRIPTION OF VAPDIF CODE

9.1 Main Program/Flow Chart

The flow chart for the main program for the VAPDIF code is shown on Fig. 9.1. It consists of four major tasks: 1) Read and print the input data; 2) Calculate the three dimensional coordinates; 3) Calculate or restart initial conditions; and 4) Solve the diffusion equation. The run stream for execution of the code is given in Section 6.1. This run stream includes both input and output data files. A table of cutput file assignments is given on Table 7.3 and a table of unit numbers is given by Table 9.1. Table 9.1 shows both input and output files. $N \notin P$ is the unit index used by the I / O routines. For input files the code generating the data is given by the code name in brackets. For output files the subroutine generating the data is given without brackets.

FIG. 9.1

FLOW CHART FOR MAIN PROGRAM FOR VAPDIF

9.2 Description of Modules by Major Task

A complete list and brief description of all the subroutines is given in Section 9.3. The flow chart for the main program for VAPDIF is shown in Fig. 9.1 with an overall description given in Section 9.1. The description of the module functions will follow this flow chart. Only major tasks will be described. Input/Output routines are self explanatory and will not be described. of the task shown on Fig. 9.1 only tasks two and four need be described.

Subroutine $A D D C \emptyset R$ generates the three dimensional coordinate system used by the VAPDIF. Coordinates generated by the ADD code and stored on file 9, are read block by bluck. Each block corresponds to on streamwise station. ADDC \emptyset R then calculates the coordinates, metrics, and arc length distance and stores the result on unit 10. It then calculates the three dimensional cartesian coordinates for each mesh point and stores the results on unit 12. Finally it calculates the transformation matrix from the computational coordinates to the cartesian coordinates and stores the result on unit 13. Data on units 12 and 13 are not necessary for the solution but are useful for plotting results in physical space.

Subroutine S \emptyset LVE solves the diffusion equation (Eq. 5.2.1) or the critical species equation (Eq. 8.2.1) depending on the input option ISDG. The main program sets the first and last station. A flow chart for subroutine SøLVE is shown on Fig. 9.2. The first task is to align the data blocks on units 8,17 and 28 with the absolute coordinate location of the coordinate grid stored on unit 9. The I D \emptyset loop steps off streamwise stations from ILøW to INUM. Next flow field data calculated by the ADD code and stored on unit 8 is read and source terms stored on units 17 and 28 are read. The V D \emptyset loop is an iteration loop for the point relaxation algorithm described in Section 5.1, and the K and $J D \emptyset$ loops sweep the entire crossplane grid including the boundary points. The coordinates stored on unit 10 are read by RDINB. The coefficients of the differential equations are calculated by CøEFFI. For ISDG>0 J CØEFSG calculates the source term S_{g} for the critical species equation (Eq. 8.2.1). On the boundaries, PBNDC applies normal derivative boundary conditions, and PERBC applies periodic boundary conditions depending on the input options. PøISSN applies the difference operators (see Section 5.1) and solves for the $V^{\text {th }}$ guess. With the completion of J, K grid sweep, a convergence check is made. If the solution converges, the solution is printed by PRTDSK and stores on unit 11 by WRDUT. The calculation then moves to the next station until the I D \emptyset loop is completed. The calculation then returns to the main program.

FLOW CHART FOR SUBROUTINE SOLVE

Table 9.1
Table of Unit Numbers

	NAME	UNIT	SUBROUTINE (CODE)	data
1	IYDRM	10	ADDCøR	3D coordinates
2	IFDRM	11	S¢LVE	Output file
3	IXDRM	12	ADDC $\mathrm{R}^{\text {R }}$	3D Castesian coordinates
4	ITDRM	13	ADDCøR	3D transformation matrix
5	INDRM	17	(VAPDIF)	Mass fraction of fuel
6	IADDRM	8	(ADD)	Air flow field
7	ICøDRM	9	(ADD)	Axisymmetric coordinates
8	IFGDRM	19	(PTRAK)	Summary droplet data
9	28	28	(PTluK)	Critical species source

9.3 List of Subroutines in VAPDIF

ADDC@R	Calculate 3D coordinates
AINTG	Area integral of prescribed function
C $¢$ EFFI	Calculate coefficients of P.D.E.
CøEFSG	Calculate source for critical species
DERBDY	Calculate derivatives on boundaries
DERINT	Calculate interior derivatives
DERIV	Calculate derivatives
DFCøR	Correct fuel concentrate
DIFFUSE	Main program
DM2DT	Critical species rate equation
DRØUT	Input/Output module
FLøWIN	Initial conditions module
PBNDC	Neuman boundary conditions
PERBC	Periodic boundary conditions
PERIOD	Read boundary values
PøISSN	Solve Poisson's equation
PRINPT	Print module
PRUN	Metric conversion
PRTDSK	Print module
RDINA	Read contiguous block data
RDINB	Read overlapping block data
RESTRT	Restart module

RH $\varnothing V$	Integrand for flow integration
S \emptyset LVE	PDE solution algorithm
SØURCE	Integrand for area integral
SUMRY	Print summary data
WRøUT	Write contiguous block data
WRøUTB	Write overlapping block data
WTFL	Integrand of Mass flow area integral

9.4 List of C $\emptyset M M$ N BLØCK Variables

The C $\triangle M M \emptyset N$ BLOCK variables are grouped into labeled C $\varnothing M M \emptyset N$ BL $\varnothing C K S$. Alphabetical listing is by labeled C $\emptyset M M \emptyset N$ BLØCK name. The C $\varnothing M M \emptyset N$ BLØCK name is given and a general description of the variables in the group. Following this is a detailed list of variables in the order in which they appear in the C CDMMN BLØCK. C COMM BLØCK variables for the ADD code are given in Ref. 4.

C $\triangle M M \mathrm{~N}$ /CADD/ ADD code Air flow variables (Ref. 4)
C $\triangle M \square N$ /CCRATE/ Variables for critical species rate equation

ISDG		Option flag
SDG	S_{g}	Source of critical species
AB, AF	A_{b}, A_{f}	
EB, EF	E_{b}, E_{f}	
ALPB, ALPF	α_{b}, α_{f}	Constants in Eq. 8.3.1
BETB, BETF	B_{b}, β_{f}	
GAMB , GAMF	γ_{b}, γ_{f}	
CARBN	ζ	Carbon number
RのCDNP	R	Gas constant ($1.98717 \mathrm{cal} / \mathrm{mole} /{ }^{\circ} \mathrm{K}$)
MøLE1, M $¢ \mathrm{LE} 2$	M_{1}, M_{2}	Molecular weights
YO2	Y_{02}	Mole fraction of O_{2}
DELTB, DELTF	δ_{b}, s_{f}	Constants in Eq. 8.3.11
ANUB, ANUF	ν_{b}, ν_{f}	
ISGMAX		Flag

$C \emptyset M M \emptyset N / C F /$ Dependent Variable
$F(J, K) \quad f_{J, K}^{I-1} \quad$ Dependent variable at $I-1, J, K$

A2 (J), A3(J)	A_{2}, A_{3}	Coefficient of second derivative
B2 (J), B3(J)	B_{3}, B_{3}	Coefficient of first derivative
$C(J)$	C	Coefficient of function

CDMMDN /CFG/ Dependent Variable
GF(J,K) $\quad f_{J, K}^{I} \quad$ Dependent variable at I, J, K

C σ MM σ N /CFG2/ Mass fraction fuel
FG2 (J,K) Mass fraction of fuel

C MMDN /CMU/ Turbulent viscosity
XMUT(J) μ_{Γ} Turbulent viscosity (gm/cm/sec)

C $\varnothing M M \phi N$ /C $O N V /$ Conversion factors
FTCM $30.48 \mathrm{~cm} / \mathrm{ft}$

LBKG . $4538 \mathrm{lb} / \mathrm{kg}$

CKELRK
$1.8{ }^{\circ} \mathrm{R} /{ }^{\circ} \mathrm{K}$

FTM
$.3048 \mathrm{~m} / \mathrm{ft}$

COMMDN /CT/ Coordinate transformation matrix
$\operatorname{TC\emptyset R}(L, M, J, K) \quad T \quad$ L, $\mathrm{M}, \mathrm{J}, \mathrm{K} \quad$ Coordinate rotation matrix at $\mathrm{I}, \mathrm{J}, \mathrm{K}$
CดMMDN /CX/ Cartesian coordinates
$X(L, J, K) \quad X_{L} \quad$ Cartesian coordinate of foint I, J, K

C \varnothing MM $\varnothing \mathrm{N} / \mathrm{CY} /$ Computational coordinates at I
Y(L, M, J, K)
$\mathrm{L}=\mathrm{J}$
Streamwise direction
$=2$
= 3
Principal normal direction
Orthogonal direction

282-915362-40

W(J, K)	\dot{w}_{L}	Source terms (gm/ $\mathrm{cm}^{3} / \mathrm{sec}$)
BDYY (L, M, J)		Wall source terms $\mathrm{gm} / \mathrm{cm}^{2} / \mathrm{sec}$
WPARM(L)		See CDMMNN/MASSD/ in PTRAK

C $\emptyset M M$ N/S $\sigma U R C 2 /$ Sources for critical species equation
W2 (J,K) $\quad S_{d} \quad$ Source for critical species equation

9.5 List of Local Variables

A list of selected local variables appears below. These variables are alphabetically listed by subrout ine name.

ADDCDR (Ref. 4)

Q(N,I)	ADD code variables
ILA	No. streamwise stations
ILA	No. normal stations
RADR	No. mesh points in Y_{1}, Y_{2}, Y_{3} directions
DSTEP	r_{r}
DPHI	Reference length

AINT:

AINT
Area integral of f

I
Axial station
HON

FUNCT

CAFFFI (KCI.)

r(INVAK, 1, J)		Air flow variables from ADl code
Sthe	Sc	Schmidt number
113%	${ }_{\mathrm{u}}{ }_{\mathrm{r}}$	Koference velucity
RHOR	${ }^{\prime} \mathrm{r}$	Reference density
TEMIR	$\mathrm{T}_{\mathbf{r}}$	Reference temperature
VISCR	"r	Reference viscosity

PRFSR	$\mathrm{P}_{\mathbf{r}}$	Reference pressure
DSTEP	Δs	Y_{1} step size
CDEFSG		
$\mathrm{RDCD} \times \mathrm{N}$	R	Gas constant ($82.0575 \mathrm{~cm}^{3} \mathrm{~atm} / \mathrm{mole} /{ }^{\circ} \mathrm{K}$)
ReCøNP	R	Gas constant ($1.9817 \mathrm{cal} / \mathrm{mole} /{ }^{\circ} \mathrm{K}$)
TINF	Ta	Air temperature (${ }^{\circ} \mathrm{K}$)
PJNF	$\mathrm{P}_{\mathbf{a}}$	Air pressure (atm)
UINF	U	Air velocity ($\mathrm{m} / \mathrm{sec}$)
X02	X_{02}	Mole concentration of oxygen (mole/cm ${ }^{3}$)
Y02	Y_{02}	Moie fraction of oxygen
DERBDY		
ID		Direction index
IV		Variable index
ITYPE		Option
DIN	f	Input array (dependent variable)
I1,12,13		Dimensions of DIN
YIN	Y	Input array (independent variable)
J0, K0		Smallest indices
DG	df/dy	First derivative
DDG	$d^{2} f / d y^{2}$	Second derivative
B, A		Intermediate values

DERINT
DERIV
DFCDR
WRATIO
BIFFUS
IADD
IBEGIN

IEND
DM2DT
DRQUT
INUNIT

ADDR
BLøCK
NMФVE
FLøWIN
$\mathrm{C} \mathrm{CNC}_{\mathrm{C}}$

PBNDC

AC, BC, CC, DC	Coefficient PDE
BDYVAL	Boundary value
J,K	Mesh point
JJ,KK	Sub block mesh point
JBDY	Boundary index
SØLN	Solution

PERBC

PDISSN

JJ,4x
SøLN

PRINPT

PRRUN
PRTDSK
IDX1, IDX2
ISTAT
$\mathrm{N} \phi \mathrm{p}$
RDINA
I, J, K
JJ, KK
ADDRI
$\mathrm{N} \emptyset \mathrm{P}$

RDINB
RESTRT
Ibegin
$\mathrm{PH} \emptyset \mathrm{V}$

RH

RLXCAL
RLXCAL

See subroutine PBNDC

Coefficients of PDE
Sub block mesh point
Solution
See output format statements
See Comy $/$ C σ NV/

Indices of variables

Unjt index

Option

Mesh point index
Sub wock index
Block length
See Table 9.1

See subroutine RDINA

Starting station no.

Mass flux (slug/ft ${ }^{2} / \mathrm{sec}$)
ρu

Relaxation parameter (Eq. 5.3.14)

SøLVE

IADD	ADD code station
IBEGIN, IEND	Beginning/Ending station
J,K	Mesh point
JJ, KK	Sub block mesh point
ISIDE	Boundary index
FTIL	$\mathrm{f}^{\mathrm{v+1}}$
RES	Guess of solution

SゆURCE

S

$$
{\stackrel{\circ}{w_{L}}}^{h_{1}}
$$

SUMRY
Integrand

WRøUT

WRøUTB
See output format statements
See subroutine RDINA

See subroutine RDINA
WTFLDW
WF
cou
Mass flux fuel (slug/ft ${ }^{2} / \mathrm{sec}$)

10.0 REFERENCES

1. Anderson, 0.L.: Finite Difference Solution for Turbulent Swirling Compressible Flow in Axisymmetric Ducts with Struts. NASA CR 2365 Fej. 1974.
2. Anderson, O.L.: User's Manual for a Finite Difference Calculation of Turbulent Swirling Compressible Flow in Axisymmetric Ducts with Structs and Slot Cooled Walls, Vol. I \& II USAAMRDL-TR-74-50, 1974.
3. Anderson, O.L.and D.E. Edwards: Extensions to an Analysis of Turbulent Swirling Compressible Flow in Axisymmetric Ducts NASA contract NAS3-21853, UTRC Report R81-914720-18. February 1981.
4. Anderson, O.L, G.B. Hankins, D.E. Edwards: User's Manual for Axisymmetric Diffuser Duct (ADD) Code. NASA CR 165598, February 1982.

[^0]: Maximum number of iterations per station (5 if omitted, 20 is recommended)
 Starting station in terms of ADD coordinate axial station numbering system;
 initial plane (or station) for vapor diffusion (VAPDIF) code. Normally,
 IADD = JFIRST
 First calculation station for the YAPDIF code in terms of ADD coordinate axial station numbering system.

 IøPT1
 IADD
 IBEGIN

