1,296 research outputs found

    Experimental compaction of anisotropic granular media

    Full text link
    We report on experiments to measure the temporal and spatial evolution of packing arrangements of anisotropic and weakly confined granular material, using high-resolution γ\gamma-ray adsorption. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical solicitations evolve to a dense state. We find that the packing fraction evolution is slowed by the grain anisotropy but, as for spherically shaped grains, can be well fitted by a stretched exponential. For a given type of grains, the characteristic times of relaxation and of convection are found to be of the same order of magnitude. On the contrary compaction mechanisms in the media strongly depend on the grain anisotropy.Comment: to appear in the european physical journal E (EPJE

    Molecular Dating, Evolutionary Rates, and the Age of the Grasses

    Get PDF
    Many questions in evolutionary biology require an estimate of divergence times but, for groups with a sparse fossil record, such estimates rely heavily on molecular dating methods. The accuracy of these methods depends on both an adequate underlying model and the appropriate implementation of fossil evidence as calibration points. We explore the effect of these in Poaceae (grasses), a diverse plant lineage with a very limited fossil record, focusing particularly on dating the early divergences in the group. We show that molecular dating based on a data set of plastid markers is strongly dependent on the model assumptions. In particular, an acceleration of evolutionary rates at the base of Poaceae followed by a deceleration in the descendants strongly biases methods that assume an autocorrelation of rates. This problem can be circumvented by using markers that have lower rate variation, and we show that phylogenetic markers extracted from complete nuclear genomes can be a useful complement to the more commonly used plastid markers. However, estimates of divergence times remain strongly affected by different implementations of fossil calibration points. Analyses calibrated with only macrofossils lead to estimates for the age of core Poaceae ∼51-55 Ma, but the inclusion of microfossil evidence pushes this age to 74-82 Ma and leads to lower estimated evolutionary rates in grasses. These results emphasize the importance of considering markers from multiple genomes and alternative fossil placements when addressing evolutionary issues that depend on ages estimated for important group

    Steady State Behavior of Mechanically Perturbed Spin Glasses and Ferromagnets

    Full text link
    A zero temperature dynamics of Ising spin glasses and ferromagnets on random graphs of finite connectivity is considered, like granular media these systems have an extensive entropy of metastable states. We consider the problem of what energy a randomly prepared spin system falls to before becoming stuck in a metastable state. We then introduce a tapping mechanism, analogous to that of real experiments on granular media, this tapping, corresponding to flipping simultaneously any spin with probability pp, leads to stationary regime with a steady state energy E(p)E(p). We explicitly solve this problem for the one dimensional ferromagnet and ±J\pm J spin glass and carry out extensive numerical simulations for spin systems of higher connectivity. The link with the density of metastable states at fixed energy and the idea of Edwards that one may construct a thermodynamics with a flat measure over metastable states is discussed. In addition our simulations on the ferromagnetic systems reveal a novel first order transition, whereas the usual thermodynamic transition on these graphs is second order.Comment: 11 pages, 7 figure

    Why Effective Medium Theory Fails in Granular Materials

    Full text link
    Experimentally it is known that the bulk modulus, K, and shear modulus, \mu, of a granular assembly of elastic spheres increase with pressure, p, faster than the p^1/3 law predicted by effective medium theory (EMT) based on Hertz-Mindlin contact forces. To understand the origin of these discrepancies, we perform numerical simulations of granular aggregates under compression. We show that EMT can describe the moduli pressure dependence if one includes the increasing number of grain-grain contacts with p. Most important, the affine assumption (which underlies EMT), is found to be valid for K(p) but breakdown seriously for \mu(p). This explains why the experimental and numerical values of \mu(p) are much smaller than the EMT predictions.Comment: 4 pages, 5 figures, http://polymer.bu.edu/~hmaks

    Random close packing of granular matter

    Full text link
    We propose an interpretation of the random close packing of granular materials as a phase transition, and discuss the possibility of experimental verification.Comment: 6 page

    A microscopic 2D lattice model of dimer granular compaction with friction

    Full text link
    We study by Monte Carlo simulation the compaction dynamics of hard dimers in 2D under the action of gravity, subjected to vertical and horizontal shaking, considering also the case in which a friction force acts for horizontal displacements of the dimers. These forces are modeled by introducing effective probabilities for all kinds of moves of the particles. We analyze the dynamics for different values of the time τ\tau during which the shaking is applied to the system and for different intensities of the forces. It turns out that the density evolution in time follows a stretched exponential behavior if τ\tau is not very large, while a power law tail develops for larger values of τ\tau. Moreover, in the absence of friction, a critical value τ\tau^* exists which signals the crossover between two different regimes: for τ<τ\tau < \tau^* the asymptotic density scales with a power law of τ\tau, while for τ>τ\tau > \tau^* it reaches logarithmically a maximal saturation value. Such behavior smears out when a finite friction force is present. In this situation the dynamics is slower and lower asymptotic densities are attained. In particular, for significant friction forces, the final density decreases linearly with the friction coefficient. We also compare the frictionless single tap dynamics to the sequential tapping dynamics, observing in the latter case an inverse logarithmic behavior of the density evolution, as found in the experiments.Comment: 10 pages, 15 figures, to be published in Phys. Rev.

    Social Interactions vs Revisions, What is important for Promotion in Wikipedia?

    Full text link
    In epistemic community, people are said to be selected on their knowledge contribution to the project (articles, codes, etc.) However, the socialization process is an important factor for inclusion, sustainability as a contributor, and promotion. Finally, what does matter to be promoted? being a good contributor? being a good animator? knowing the boss? We explore this question looking at the process of election for administrator in the English Wikipedia community. We modeled the candidates according to their revisions and/or social attributes. These attributes are used to construct a predictive model of promotion success, based on the candidates's past behavior, computed thanks to a random forest algorithm. Our model combining knowledge contribution variables and social networking variables successfully explain 78% of the results which is better than the former models. It also helps to refine the criterion for election. If the number of knowledge contributions is the most important element, social interactions come close second to explain the election. But being connected with the future peers (the admins) can make the difference between success and failure, making this epistemic community a very social community too
    corecore