169 research outputs found
An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy
The formation of single phase solid solutions from combinations of multiple principal elements, with differing atomic radii, has led to the suggestion that the lattices of high-entropy alloys (HEAs) must be severely distorted. To assess this hypothesis, total scattering measurements using neutron radiation have been performed on the CrMnFeCoNi alloy and compared with similar data from five compositionally simpler materials within the same system. The Bragg diffraction patterns from all of the studied materials were similar, consistent with a face-centered cubic structure, and none showed the pronounced dampening that would be expected from a highly distorted lattice. A more detailed evaluation of the local lattice strain was made by considering the first six coordination shells in the pair distribution functions (PDF), obtained from the total scattering data. Across this range, the HEA exhibited the broadest PDF peaks but these widths were not disproportionately larger than those of the simpler alloys. In addition, of all the materials considered, the HEA was at the highest homologous temperature, and hence the thermal vibrations of the atoms would be greatest. Consequently, the level of local lattice strain required to rationalise a given PDF peak width would be reduced. As a result, the data presented in this study do not indicate that the local lattice strain in the equiatomic CrMnFeCoNi HEA is anomalously large.The authors would like to thank the EPSRC/Rolls-Royce Strategic Partnership for funding (EP/M005607/1 and EP/H022309).This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.actamat.2016.09.03
A Gravity Dual of the Chiral Anomaly
We study effects associated with the chiral anomaly for a cascading
gauge theory using gauge/gravity duality. In the gravity
dual the anomaly is a classical feature of the supergravity solution, and the
breaking of the U(1) R-symmetry down to proceeds via the Higgs
mechanism.Comment: 15 pages, derivation of vector mass corrected, main conclusions
unchanged, a sign convention changed in section
Lake Naivasha, Kenya: ecology, society and future
We examine the degradation of the natural capital and ecosystem services of an important tropical lake, Kenya’s Lake Naivasha, in the context of human activities and exploitation since the mid-20th century. These factors have culminated in the recent emergence of innovative governance arrangements with potential contributions to the future sustainability of the lake ecosystem.Lake Naivasha maintains high ecological interest and biodiversity value despite its food web being controlled, at three trophic levels, by alien species for the past 40 years. The lake now has very high economic value, being the centre of Kenya’s floricultural industry, itself the top foreign exchange earner for the country. It became internationally-renowned in 1999 as one of the first wetland sites worldwide to be nominated by the government for Ramsar status as a result of local action, guided by the Lake Naivasha Riparian Association (LNRA). This led, in 2004, to gazettement by the Kenyan Government for the management of the lake by a Committee under LNRA guidance.By 2010, however, progress towards sustainable management was limited, not least because the lake water had continued to be over-exploited for irrigation, geothermal power exploration and domestic supplies outside the catchment. A prolonged drought in Kenya in 2009–10, in conjunction with this ongoing over-exploitation, caused the lake level to recede to the lowest since the late 1940s and brought the ecological degradation to global attention. Arguably, this new prominence catalysed the political interventions which now offer new hope of progress towards a sustainable lake basin.We examine the ecological changes over the past 40 years and the reasons why new management regimes instituted over the past 10 years have to date been unable to halt ecological degradation of the lake and its environs. We outline a future trajectory that links new governance initiatives with a wider network of stakeholders which, together with external interventions that have been initiated in 2011, may well help to restore the ecosystem’s health
Analytic models of plausible gravitational lens potentials
Gravitational lenses on galaxy scales are plausibly modelled as having
ellipsoidal symmetry and a universal dark matter density profile, with a Sersic
profile to describe the distribution of baryonic matter. Predicting all lensing
effects requires knowledge of the total lens potential: in this work we give
analytic forms for that of the above hybrid model. Emphasising that complex
lens potentials can be constructed from simpler components in linear
combination, we provide a recipe for attaining elliptical symmetry in either
projected mass or lens potential. We also provide analytic formulae for the
lens potentials of Sersic profiles for integer and half-integer index. We then
present formulae describing the gravitational lensing effects due to
smoothly-truncated universal density profiles in cold dark matter model. For
our isolated haloes the density profile falls off as radius to the minus fifth
or seventh power beyond the tidal radius, functional forms that allow all
orders of lens potential derivatives to be calculated analytically, while
ensuring a non-divergent total mass. We show how the observables predicted by
this profile differ from that of the original infinite-mass NFW profile.
Expressions for the gravitational flexion are highlighted. We show how
decreasing the tidal radius allows stripped haloes to be modelled, providing a
framework for a fuller investigation of dark matter substructure in galaxies
and clusters. Finally we remark on the need for finite mass halo profiles when
doing cosmological ray-tracing simulations, and the need for readily-calculable
higher order derivatives of the lens potential when studying catastrophes in
strong lenses.Comment: 24 pages, 10 figures, matches published versio
Proinflammatory bacterial peptidoglycan as a cofactor for the development of central nervous system autoimmune disease
Upon stimulation by microbial products through TLR, dendritic cells (DC) acquire the capacity to prime naive T cells and to initiate a proinflammatory immune response. Recently, we have shown that APC within the CNS of multiple sclerosis (MS) patients contain peptidoglycan (PGN), a major cell wall component of Gram-positive bacteria, which signals through TLR and NOD. In this study, we report that Staphylococcus aureus PGN as a single component can support the induction of experimental autoimmune encephalomyelitis (EAE) in mice, an animal model for MS. Mice immunized with an encephalitogenic myelin oligodendrocyte glycoprotein peptide in IFA did not develop EAE. In contrast, addition of PGN to the emulsion was sufficient for priming of autoreactive Th1 cells and development of EAE.
In vitro studies demonstrate that PGN stimulates DC-mediated processes,
reflected by increased Ag uptake, DC maturation, Th1 cell expansion,
activation, and proinflammatory cytokine production. These data indicate
that PGN-mediated interactions result in proinflammatory stimulation of
Ag-specific effector functions, which are important in the development of
EAE. These PGN-mediated processes may occur both within the peripheral
ly
Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion
Mesenchymal stem cells (MSC) are under investigation as a therapy for a variety of disorders. Although animal models show long term regenerative and immunomodulatory effects of MSC, the fate of MSC after infusion remains to be elucidated. In the present study the localization and viability of MSC was examined by isolation and re-culture of intravenously infused MSC. C57BL/6 MSC (500,000) constitutively expressing DsRed-fluorescent protein and radioactively labeled with Cr-51 were infused via the tail vein in wild-type C57BL/6 mice. After 5 min, 1, 24, or 72 h, mice were sacrificed and blood, lungs, liver, spleen, kidneys, and bone marrow removed. One hour after MSC infusion the majority of Cr-51 was found in the lungs, whereas after 24 h Cr-51 was mainly found in the liver. Tissue cultures demonstrated that viable donor MSC were present in the lungs up to 24 h after infusion, after which they disappeared. No viable MSC were found in the other organs examined at any time. The induction of ischemia-reperfusion injury in the liver did not trigger the migration of viable MSC to the liver. These results demonstrate that MSC are short-lived after i.v. infusion and that viable MSC do not pass the lungs. Cell debris may be transported to the liver. Long term immunomodulatory and regenerative effects of infused MSC must therefore be mediated via other cell types
Heavy Quarks and Heavy Quarkonia as Tests of Thermalization
We present here a brief summary of new results on heavy quarks and heavy
quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma
Thermalization" Workshop in Vienna, Austria in August 2005, directly following
the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop
(Vienna August 2005) Proceeding
Unenhanced CT imaging is highly sensitive to exclude pheochromocytoma: A multicenter study
Background: A substantial proportion of all pheochromocytomas is currently detected during the evaluation of an adrenal incidentaloma. Recently, it has been suggested that biochemical testing to rule out pheochromocytoma is unnecessary in case of an adrenal incidentaloma with an unenhanced attenuation value ≤10Hounsfield Units (HU) at computed tomography (CT). Objectives: We aimed to determine the sensitivity of the 10HU threshold value to exclude a pheochromocytoma. Methods: Retrospective multicenter study with systematic reassessment of preoperative unenhanced CT scans performed in patients in whom a histopathologically proven pheochromocytoma had been diagnosed. Unenhanced attenuation values were determined independently by two experienced radiologists. Sensitivity of the 10HU threshold was calculated, and interobserver consistency was assessed using the intraclass correlation coefficient (ICC). Results: 214 patients were identified harboring a total number of 222 pheochromocytomas. Maximum tumor diameter was 51 (39–74)mm. The mean attenuation value within the region of interest was 36±10HU. Only one pheochromocytoma demonstrated an attenuation value ≤10HU, resulting in a sensitivity of 99.6% (95% CI: 97.5–99.9). ICC was 0.81 (95% CI: 0.75–0.86) with a standard error of measurement of 7.3HU between observers. Conclusion: The likelihood of a pheochromocytoma with an unenhanced attenuation value ≤10HU on CT is very low. The interobserver consistency in attenuation measurement is excellent. Our study supports the recommendation that in patients with an adrenal incidentaloma biochemical testing for ruling out pheochromocytoma is only indicated in adrenal tumors with an unenhanced attenuation value >10HU
Commissioning and performance of the CMS pixel tracker with cosmic ray muons
This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,
and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia);
Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG,
and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT,
SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
Alignment of the CMS silicon tracker during commissioning with cosmic rays
This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,
and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS
(Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia);
Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG,
and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT,
SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
- …