16 research outputs found

    Technical and economic assessment of trash recovery in the sugarcane bioenergy production system

    No full text
    Mechanized sugarcane (Saccharum spp.) harvest without burning has been increasingly adopted in Brazil, increasing trash availability on the field. This study aims at showing the importance of using an integrated framework tool to assess technical and economic impacts of integral harvesting and baling trash recovery strategies and different recovery rates as well as its implications in the sugarcane production, transport and processing stages. Trash recovery using baling system presents higher costs per unit of mass of recovered trash in comparison to system in which trash is harvested and transported with sugarcane stalks (integral harvesting system). However, the integrated agricultural and industrial assessment showed that recovering trash using baling system presents better economic results (higher internal rate of return and lower ethanol production cost) than the integral harvesting system for trash recovery rates higher than 30 %. Varying trash recovery fraction, stalks productivity and mean transport distance for both integral harvesting and baling systems, sensitivity analyses showed that higher trash recovery fractions associated with higher stalks yields and long transport distances favors baling system, mainly due to the reduction of bulk load density for integral harvesting system under those conditions

    Technical and economic assessment of trash recovery in the sugarcane bioenergy production system

    No full text
    Mechanized sugarcane (Saccharum spp.) harvest without burning has been increasingly adopted in Brazil, increasing trash availability on the field. This study aims at showing the importance of using an integrated framework tool to assess technical and economic impacts of integral harvesting and baling trash recovery strategies and different recovery rates as well as its implications in the sugarcane production, transport and processing stages. Trash recovery using baling system presents higher costs per unit of mass of recovered trash in comparison to system in which trash is harvested and transported with sugarcane stalks (integral harvesting system). However, the integrated agricultural and industrial assessment showed that recovering trash using baling system presents better economic results (higher internal rate of return and lower ethanol production cost) than the integral harvesting system for trash recovery rates higher than 30 %. Varying trash recovery fraction, stalks productivity and mean transport distance for both integral harvesting and baling systems, sensitivity analyses showed that higher trash recovery fractions associated with higher stalks yields and long transport distances favors baling system, mainly due to the reduction of bulk load density for integral harvesting system under those conditions

    Technical and economic assessment of trash recovery in the sugarcane bioenergy production system

    No full text
    Mechanized sugarcane (Saccharum spp.) harvest without burning has been increasingly adopted in Brazil, increasing trash availability on the field. This study aims at showing the importance of using an integrated framework tool to assess technical and economic impacts of integral harvesting and baling trash recovery strategies and different recovery rates as well as its implications in the sugarcane production, transport and processing stages. Trash recovery using baling system presents higher costs per unit of mass of recovered trash in comparison to system in which trash is harvested and transported with sugarcane stalks (integral harvesting system). However, the integrated agricultural and industrial assessment showed that recovering trash using baling system presents better economic results (higher internal rate of return and lower ethanol production cost) than the integral harvesting system for trash recovery rates higher than 30 %. Varying trash recovery fraction, stalks productivity and mean transport distance for both integral harvesting and baling systems, sensitivity analyses showed that higher trash recovery fractions associated with higher stalks yields and long transport distances favors baling system, mainly due to the reduction of bulk load density for integral harvesting system under those conditions.35336

    Genome-wide study of the defective sucrose fermenter strain of Vibrio cholerae from the Latin American cholera epidemic.

    Get PDF
    Contains fulltext : 108030.pdf (publisher's version ) (Open Access)The 7th cholera pandemic reached Latin America in 1991, spreading from Peru to virtually all Latin American countries. During the late epidemic period, a strain that failed to ferment sucrose dominated cholera outbreaks in the Northern Brazilian Amazon region. In order to understand the genomic characteristics and the determinants of this altered sucrose fermenting phenotype, the genome of the strain IEC224 was sequenced. This paper reports a broad genomic study of this strain, showing its correlation with the major epidemic lineage. The potentially mobile genomic regions are shown to possess GC content deviation, and harbor the main V. cholera virulence genes. A novel bioinformatic approach was applied in order to identify the putative functions of hypothetical proteins, and was compared with the automatic annotation by RAST. The genome of a large bacteriophage was found to be integrated to the IEC224's alanine aminopeptidase gene. The presence of this phage is shown to be a common characteristic of the El Tor strains from the Latin American epidemic, as well as its putative ancestor from Angola. The defective sucrose fermenting phenotype is shown to be due to a single nucleotide insertion in the V. cholerae sucrose-specific transportation gene. This frame-shift mutation truncated a membrane protein, altering its structural pore-like conformation. Further, the identification of a common bacteriophage reinforces both the monophyletic and African-Origin hypotheses for the main causative agent of the 1991 Latin America cholera epidemics

    Genome of the Latin American epidemic <i>Vibrio cholerae</i> marker phage.

    No full text
    <p>Graphical representation of the genes that correspond to the genome of a bacteriophage that is present in all the Latin American epidemic strains tested in this study. The CDS are the blue arrows that are pointed towards the direction they are coded in the genome. The putative protein functions are listed below, with a corresponding number to its localization in the image. (Images generated in the Geneious software – reference <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0037283#pone.0037283-Drummond1" target="_blank">[24]</a>)</p

    Variants of the Latin American epidemic phage in sequenced V. cholerae genomes.

    No full text
    <p>The assembly of sequencing reads from 16 other El Tor <i>V. cholerae</i> genomes from Latin America, and their putative ancestor strain from Angola, revealed the presence of the Latin American epidemic phage in all strains. The genomic variations were in 8 sites numbered from bases 0 through 49,291 (right). Collectively these strains formed 10 variants of the phage, with the variant A being the most abundant. This variant is shared with the putative ancestor strain. All strains accumulated at least one SNP after 1992.</p
    corecore