13 research outputs found

    Confocal Laser Scanning Microscopy, a New In Vivo Diagnostic Tool for Schistosomiasis

    Get PDF
    BACKGROUND: The gold standard for the diagnosis of schistosomiasis is the detection of the parasite's characteristic eggs in urine, stool, or rectal and bladder biopsy specimens. Direct detection of eggs is difficult and not always possible in patients with low egg-shedding rates. Confocal laser scanning microscopy (CLSM) permits non-invasive cell imaging in vivo and is an established way of obtaining high-resolution images and 3-dimensional reconstructions. Recently, CLSM was shown to be a suitable method to visualize Schistosoma mansoni eggs within the mucosa of dissected mouse gut. In this case, we evaluated the suitability of CLSM to detect eggs of Schistosoma haematobium in a patient with urinary schistosomiasis and low egg-shedding rates. METHODOLOGY/PRINCIPAL FINDINGS: The confocal laser scanning microscope used in this study was based on a scanning laser system for imaging the retina of a living eye, the Heidelberg Retina Tomograph II, in combination with a lens system (image modality). Standard light cystoscopy was performed using a rigid cystoscope under general anaesthesia. The CLSM endoscope was then passed through the working channel of the rigid cystoscope. The mucosal tissue of the bladder was scanned using CLSM. Schistoma haematobium eggs appeared as bright structures, with the characteristic egg shape and typical terminal spine. CONCLUSION/SIGNIFICANCE: We were able to detect schistosomal eggs in the urothelium of a patient with urinary schistosomiasis. Thus, CLSM may be a suitable tool for the diagnosis of schistosomiasis in humans, especially in cases where standard diagnostic tools are not suitable

    The architecture and effect of participation: a systematic review of community participation for communicable disease control and elimination. Implications for malaria elimination

    Get PDF
    Community engagement and participation has played a critical role in successful disease control and elimination campaigns in many countries. Despite this, its benefits for malaria control and elimination are yet to be fully realized. This may be due to a limited understanding of the influences on participation in developing countries as well as inadequate investment in infrastructure and resources to support sustainable community participation. This paper reports the findings of an atypical systematic review of 60 years of literature in order to arrive at a more comprehensive awareness of the constructs of participation for communicable disease control and elimination and provide guidance for the current malaria elimination campaign.Evidence derived from quantitative research was considered both independently and collectively with qualitative research papers and case reports. All papers included in the review were systematically coded using a pre-determined qualitative coding matrix that identified influences on community participation at the individual, household, community and government/civil society levels. Colour coding was also carried out to reflect the key primary health care period in which community participation programmes originated. These processes allowed exhaustive content analysis and synthesis of data in an attempt to realize conceptual development beyond that able to be achieved by individual empirical studies or case reports.Of the 60 papers meeting the selection criteria, only four studies attempted to determine the effect of community participation on disease transmission. Due to inherent differences in their design, interventions and outcome measures, results could not be compared. However, these studies showed statistically significant reductions in disease incidence or prevalence using various forms of community participation. The use of locally selected volunteers provided with adequate training, supervision and resources are common and important elements of the success of the interventions in these studies. In addition, qualitative synthesis of all 60 papers elucidates the complex architecture of community participation for communicable disease control and elimination which is presented herein.The current global malaria elimination campaign calls for a health systems strengthening approach to provide an enabling environment for programmes in developing countries. In order to realize the benefits of this approach it is vital to provide adequate investment in the 'people' component of health systems and understand the multi-level factors that influence their participation. The challenges of strengthening this component of health systems are discussed, as is the importance of ensuring that current global malaria elimination efforts do not derail renewed momentum towards the comprehensive primary health care approach. It is recommended that the application of the results of this systematic review be considered for other diseases of poverty in order to harmonize efforts at building 'competent communities' for communicable disease control and optimising health system effectiveness

    Comparative Assessment of Urine Circulating Cathodic Antigen (CCA) Detection Cassette and Microscopy for the Diagnosis of Schistosomiasis in North Central Nigeria

    No full text
    This study was carried out between May and December 2019 in four States (Benue, Kogi, Kwara and Niger) in North Central Nigeria to determine the prevalence of schistosomiasis (urinary and intestinal) among primary school pupils using the newly developed Schisto point-of-care (PoC) Urine Circulating Cathodic Antigen (CCA) detection cassette and microscopy in order to evaluate the performance of the CCA detection cassette test. One thousand, one hundred and seventy-six stool and urine specimens were collected from participants and examined using urine CCA detection cassette test and microscopy (Kato-Katz method for stool and urine filtration techniques for urine specimens). A total of 524 (40.9%) out of the1,176 pupils sampled tested positive using CCA detection cassette, while 381 (33.5%) pupils were positive using microscopy. The difference in the prevalence of schistosomiasis using CCA detection cassette and microscopy was statistically significantly (p = 0.000). The sensitivity and specificity of CCA detection cassette using latent class analysis (LCA) were 76.3% and 76.9% respectively, while the sensitivity and specificity of microscopy were 62.5% and 86.5% respectively. The prevalence of schistosomiasis in males and females was 42.6% and 38.2% respectively using CCA detection cassette, while microscopy method had a prevalence of 32.4% in males and 35.3% in females (p = 0.693) respectively. There were no significant differences in prevalence in both sexes using CCA detection cassette and microscopy It was concluded that the newly developed Urine CCA detection cassette having identified more schistosomiasis cases than the old microscopic methods, stands to be more promising for clinical and community diagnosis of schistosomiasis as compared to the old microscopic methods although further evaluation is required. Key words: Comparative Assessment, Newly Developed, Urine Circulating Cathodic Antigen, Detection, Microscopy

    Significance of schistosomal granuloma modulation

    No full text
    Hepatic Schistosoma mansoni periovular granulomas undergo changes in size, cellular composition and appearance with time. This phenomenom, known as "immunological modulation", has been thought to reflect host immunological status. However, as modulation has not been observed outside the liver, participation of local factors, hitherto little considered, seems crucial. Components of the extracellular matrix of periovular granulomas of the mouse were particularly studied in three different organs (liver, lung and intestine) and during three periods of infection time (acute, intermediate and chronic) by means of histological, biochemical and imunofluorescence techniques, while quantitative data were evaluated by computerized morphometry, in order to investigate participation of local factors in granuloma modulation. Results confirmed modulation as a exclusively hepatic phenomenom, since pulmonary and intestinal granulomas, formed around mature eggs, did not change size and appearance with time. The matricial components which were investigated (Type I, III and IV collagens, fibronectin, laminin, proteoglycans and elastin) were found in all granulomas and in all organs examined. However, their presence was much more prominent in the liver. Elastin was only found in hepatic granulomas of chronic infection. The large amount of extracellular matrix components found in hepatic granulomas was the main change responsible for the morphological aspects of modulation. Therefore, the peculiar environment of the liver ultimately determines the changes identified in schistosomal granuloma as "modulation"

    Role of cytokines in the formation and downregulation of hepatic circumoval granulomas and hepatic fibrosis in Schistosoma mansoni-infected mice

    No full text
    Schistosoma mansoni infections are associated with a strong Th2 cytokine response. Treatment of mice with IL-12 or anti-IL-2 or anti-IL-4 before i.v. injection of eggs increased IFNγ production and downregulated Th2 responses and pulmonary granuloma size. Conversely, anti-IFN-γ antibody treatment increased Th2 responses and granuloma size. Similar manipulation produced less dramatic results in infected mice. However, sensitization of mice with eggs + IL-12 before infection augmented the Th1 response and decreased Th2 cytokines, granuloma size and fibrosis. Antisera to IFNγ, TNFα or IL-12 during IL-12-egg immunization partly restored granuloma size and fibrosis following infection. Variations in the size of granulomas in acute (8 week) infections may be influenced primarily by the number and state of activation of T cells. In chronic (12-16 week) infections immunologic downmodulation proceeded normally in mice without functional CD8+ cells and in IFNγ KO mice but not in B cell KO (mMT) mice or in mice deficient in FcR expression in spite of the fact that these mice downregulated their T cell and cytokine responses. It is evident that the participation of cytokines in granuloma formation and regulation is complicated and that the mechanisms controlling both these phenomena are likely to involve both T cells and antibody/FcR interactions

    A Novel Mouse Model of <i>Schistosoma haematobium</i> Egg-Induced Immunopathology

    Get PDF
    <div><p><i>Schistosoma haematobium</i> is the etiologic agent for urogenital schistosomiasis, a major source of morbidity and mortality for more than 112 million people worldwide. Infection with <i>S. haematobium</i> results in a variety of immunopathologic sequelae caused by parasite oviposition within the urinary tract, which drives inflammation, hematuria, fibrosis, bladder dysfunction, and increased susceptibility to urothelial carcinoma. While humans readily develop urogenital schistosomiasis, the lack of an experimentally-tractable model has greatly impaired our understanding of the mechanisms that underlie this important disease. We have developed an improved mouse model of <i>S. haematobium</i> urinary tract infection that recapitulates several aspects of human urogenital schistosomiasis. Following microinjection of purified <i>S. haematobium</i> eggs into the bladder wall, mice consistently develop macrophage-rich granulomata that persist for at least 3 months and pass eggs in their urine. Importantly, egg-injected mice also develop urinary tract fibrosis, bladder dysfunction, and various urothelial changes morphologically reminiscent of human urogenital schistosomiasis. As expected, <i>S. haematobium</i> egg-induced immune responses in the immediate microenvironment, draining lymph nodes, and systemic circulation are associated with a Type 2-dominant inflammatory response, characterized by high levels of interleukin-4, eosinophils, and IgE. Taken together, our novel mouse model may help facilitate a better understanding of the unique pathophysiological mechanisms of epithelial dysfunction, tissue fibrosis, and oncogenesis associated with urogenital schistosomiasis.</p></div
    corecore