2,088 research outputs found

    Statistics of Magnification Perturbations by Substructure in the Cold Dark Matter Cosmological Model

    Full text link
    We study the statistical properties of magnification perturbations by substructures in strong lensed systems using linear perturbation theory and an analytical substructure model including tidal truncation and a continuous substructure mass spectrum. We demonstrate that magnification perturbations are dominated by perturbers found within a tidal radius of an image, and that sizable magnification perturbations may arise from small, coherent contributions from several substructures within the lens halo. We find that the root-mean-square (rms) fluctuation of the magnification perturbation is 10% to 20% and both the average and rms perturbations are sensitive to the mass spectrum and density profile of the perturbers. Interestingly, we find that relative to a smooth model of the same mass, the average magnification in clumpy models is lower (higher) than that in smooth models for positive (negative) parity images. This is opposite from what is observed if one assumes that the image magnification predicted by the best-fit smooth model of a lens is a good proxy for what the observed magnification would have been if substructures were absent. While it is possible for this discrepancy to be resolved via nonlinear perturbers, we argue that a more likely explanation is that the assumption that the best-fit lens model is a good proxy for the magnification in the absence of substructure is not correct. We conclude that a better theoretical understanding of the predicted statistical properties of magnification perturbations by CDM substructure is needed in order to affirm that CDM substructures have been unambiguously detected.Comment: ApJ accepted, minor change

    The Chemical Enrichment History of the Large Magellanic Cloud

    Full text link
    Ca II triplet spectroscopy has been used to derive stellar metallicities for individual stars in four LMC fields situated at galactocentric distances of 3\arcdeg, 5\arcdeg, 6\arcdeg\@ and 8\arcdeg\@ to the north of the Bar. Observed metallicity distributions show a well defined peak, with a tail toward low metallicities. The mean metallicity remains constant until 6\arcdeg\@ ([Fe/H]\sim-0.5 dex), while for the outermost field, at 8\arcdeg, the mean metallicity is substantially lower than in the rest of the disk ([Fe/H]\sim-0.8 dex). The combination of spectroscopy with deep CCD photometry has allowed us to break the RGB age--metallicity degeneracy and compute the ages for the objects observed spectroscopically. The obtained age--metallicity relationships for our four fields are statistically indistinguishable. We conclude that the lower mean metallicity in the outermost field is a consequence of it having a lower fraction of intermediate-age stars, which are more metal-rich than the older stars. The disk age--metallicity relationship is similar to that for clusters. However, the lack of objects with ages between 3 and 10 Gyr is not observed in the field population. Finally, we used data from the literature to derive consistently the age--metallicity relationship of the bar. Simple chemical evolution models have been used to reproduce the observed age--metallicity relationships with the purpose of investigating which mechanism has participated in the evolution of the disk and bar. We find that while the disk age--metallicity relationship is well reproduced by close-box models or models with a small degree of outflow, that of the bar is only reproduced by models with combination of infall and outflow.Comment: 45 pages, 10 figures, accepted for publication in Astronomical Journa

    Strong Bulk Photovoltaic Effect in Planar Barium Titanate Thin Films

    Full text link
    The bulk photovoltaic effect (BPE) leads to the generation of a photocurrent from an asymmetric material. Despite drawing much attention due to its ability to generate photovoltages above the band gap (EgE_g), it is considered a weak effect due to the low generated photocurrents. Here, we show that a remarkably high photoresponse can be achieved by exploiting the BPE in simple planar BaTiO3_3 (BTO) films, solely by tuning their fundamental ferroelectric properties via strain and growth orientation induced by epitaxial growth on different substrates. We find a non-monotonic dependence of the responsivity (RSCR_{\rm SC}) on the ferroelectric polarization (PP) and obtain a remarkably high BPE coefficient (β\beta) of \approx102^{-2} 1/V, which to the best of our knowledge is the highest reported to date for standard planar BTO thin films. We show that the standard first-principles-based descriptions of BPE in bulk materials cannot account for the photocurrent trends observed for our films and therefore propose a novel mechanism that elucidates the fundamental relationship between PP and responsivity in ferroelectric thin films. Our results suggest that practical applications of ferroelectric photovoltaics in standard planar film geometries can be achieved through careful joint optimization of the bulk structure, light absorption, and electrode-absorber interface properties.Comment: 12 pages, 8 figure

    Cosmological Constraints from Galaxy Clustering and the Mass-to-Number Ratio of Galaxy Clusters

    Full text link
    We place constraints on the average density (Omega_m) and clustering amplitude (sigma_8) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, w_p, and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our w_p measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct non-linear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both w_p and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Omega_m or sigma_8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, even though this technique does not use abundance information. Using w_p and M/N alone, we find Omega_m^0.5*sigma_8=0.465+/-0.026, with individual constraints of Omega_m=0.29+/-0.03 and sigma_8=0.85+/-0.06. Combined with current CMB data, these constraints are Omega_m=0.290+/-0.016 and sigma_8=0.826+/-0.020. All errors are 1-sigma. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.Comment: 23 pages, submitted to Ap

    Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD.

    Get PDF
    BACKGROUND: Germline pathogenic variants in SDHB/SDHC/SDHD are the most frequent causes of inherited phaeochromocytomas/paragangliomas. Insufficient information regarding penetrance and phenotypic variability hinders optimum management of mutation carriers. We estimate penetrance for symptomatic tumours and elucidate genotype-phenotype correlations in a large cohort of SDHB/SDHC/SDHD mutation carriers. METHODS: A retrospective survey of 1832 individuals referred for genetic testing due to a personal or family history of phaeochromocytoma/paraganglioma. 876 patients (401 previously reported) had a germline mutation in SDHB/SDHC/SDHD (n=673/43/160). Tumour risks were correlated with in silico structural prediction analyses. RESULTS: Tumour risks analysis provided novel penetrance estimates and genotype-phenotype correlations. In addition to tumour type susceptibility differences for individual genes, we confirmed that the SDHD:p.Pro81Leu mutation has a distinct phenotype and identified increased age-related tumour risks with highly destabilising SDHB missense mutations. By Kaplan-Meier analysis, the penetrance (cumulative risk of clinically apparent tumours) in SDHB and (paternally inherited) SDHD mutation-positive non-probands (n=371/67 with detailed clinical information) by age 60 years was 21.8% (95% CI 15.2% to 27.9%) and 43.2% (95% CI 25.4% to 56.7%), respectively. Risk of malignant disease at age 60 years in non-proband SDHB mutation carriers was 4.2%(95% CI 1.1% to 7.2%). With retrospective cohort analysis to adjust for ascertainment, cumulative tumour risks for SDHB mutation carriers at ages 60 years and 80 years were 23.9% (95% CI 20.9% to 27.4%) and 30.6% (95% CI 26.8% to 34.7%). CONCLUSIONS: Overall risks of clinically apparent tumours for SDHB mutation carriers are substantially lower than initially estimated and will improve counselling of affected families. Specific genotype-tumour risk associations provides a basis for novel investigative strategies into succinate dehydrogenase-related mechanisms of tumourigenesis and the development of personalised management for SDHB/SDHC/SDHD mutation carriers
    corecore