435 research outputs found

    Effects of surface vibrations on interlayer mass-transport: ab initio molecular dynamics investigation of Ti adatom descent pathways and rates from TiN/TiN(001) islands

    Full text link
    We carry out density-functional ab initio molecular dynamics (AIMD) simulations of Ti adatom (Tiad) migration on, and descent from, TiN -faceted epitaxial islands on TiN(001) at temperatures T ranging from 1200 to 2400 K. Adatom-descent energy-barriers determined via ab initio nudged-elastic-band calculations at 0 Kelvin suggest that Ti interlayer transport on TiN(001) occurs essentially exclusively via direct hopping onto a lower layer. However, AIMD simulations reveal comparable rates for Tiad descent via direct-hopping vs. push-out/exchange with a Ti island edge atom for T >= 1500 K. We demonstrate that the effect is due to surface vibrations, which yield considerably lower activation energies at finite temperatures by significantly modifying the adatom push/out-exchange reaction pathway.Comment: 13 Figure

    Toward Rare-Earth-Free Permanent Magnets: A Combinatorial Approach Exploiting the Possibilities of Modeling, Shape Anisotropy in Elongated Nanoparticles, and Combinatorial Thin-Film Approach

    Get PDF
    The objective of the rare-earth free permanent magnets (REFREEPM) project is to develop a new generation of high-performance permanent magnets (PMs) without rare earths. Our approach is based on modeling using a combinatorial approach together with micromagnetic modeling and the realization of the modeled systems (I) by using a novel production of high-aspect-ratio (>5) nanostructrures (nanowires, nanorods, and nanoflakes) by exploiting the magnetic shape anisotropy of the constituents that can be produced via chemical nanosynthesis polyol process or electrodeposition, which can be consolidated with novel processes for a new generation of rare-earth free PMs with energy product in the range of 60 kJ/m3 < (BH)max < 160 kJ/m3 at room temperature, and (II) by using a high-throughput thin-film synthesis and high-throughput characterization approach to identify promising candidate materials that can be stabilized in a tetragonal or hexagonal structure by epitaxial growth on selected substrates, under various conditions of pressure, stoichiometry, and temperature. In this article, we report the progress so far in selected phases.This work is supported by European Commission (REFREEPERMAG project) grant number GA-NMP3-SL-2012-280670

    Developing a European longitudinal and interprofessional curriculum for clinical reasoning

    Get PDF
    Clinical reasoning is a complex and crucial ability health professions students need to acquire during their education. Despite its importance, explicit clinical reasoning teaching is not yet implemented in most health professions educational programs. Therefore, we carried out an international and interprofessional project to plan and develop a clinical reasoning curriculum with a train-the-trainer course to support educators in teaching this curriculum to students. We developed a framework and curricular blueprint. Then we created 25 student and 7 train-the-trainer learning units and we piloted 11 of these learning units at our institutions. Learners and faculty reported high satisfaction and they also provided helpful suggestions for improvements. One of the main challenges we faced was the heterogeneous understanding of clinical reasoning within and across professions. However, we learned from each other while discussing these different views and perspectives on clinical reasoning and were able to come to a shared understanding as the basis for developing the curriculum. Our curriculum fills an important gap in the availability of explicit clinical reasoning educational materials both for students and faculty and is unique with having specialists from different countries, schools, and professions. Faculty time and time for teaching clinical reasoning in existing curricula remain important barriers for implementation of clinical reasoning teaching

    β-Microseminoprotein Endows Post Coital Seminal Plasma with Potent Candidacidal Activity by a Calcium- and pH-Dependent Mechanism

    Get PDF
    The innate immune factors controlling Candida albicans are mostly unknown. Vulvovaginal candidiasis is common in women and affects approximately 70–75% of all women at least once. Despite the propensity of Candida to colonize the vagina, transmission of Candida albicans following sexual intercourse is very rare. This prompted us to investigate whether the post coital vaginal milieu contained factors active against C. albicans. By CFU assays, we found prominent candidacidal activity of post coital seminal plasma at both neutral and the acid vaginal pH. In contrast, normal seminal plasma did not display candidacidal activity prior to acidification. By antifungal gel overlay assay, one clearing zone corresponding to a protein band was found in both post coital and normal seminal plasma, which was subsequently identified as β-microseminoprotein. At neutral pH, the fungicidal activity of β-microseminoprotein and seminal plasma was inhibited by calcium. By NMR spectroscopy, amino acid residue E71 was shown to be critical for the calcium coordination. The acidic vaginal milieu unleashed the fungicidal activity by decreasing the inhibitory effect of calcium. The candidacidal activity of β-microseminoprotein was mapped to a fragment of the C-terminal domain with no structural similarity to other known proteins. A homologous fragment from porcine β-microseminoprotein demonstrated calcium-dependent fungicidal activity in a CFU assay, suggesting this may be a common feature for members of the β-microseminoprotein family. By electron microscopy, β-microseminoprotein was found to cause lysis of Candida. Liposome experiments demonstrated that β-microseminoprotein was active towards ergosterol-containing liposomes that mimic fungal membranes, offering an explanation for the selectivity against fungi. These data identify β-microseminoprotein as an important innate immune factor active against C. albicans and may help explain the low sexual transmission rate of Candida

    Understanding Battery Interfaces by Combined Characterization and Simulation Approaches: Challenges and Perspectives

    Get PDF
    Driven by the continuous search for improving performances, understanding the phenomena at the electrode/electrolyte interfaces has become an overriding factor for the success of sustainable and efficient battery technologies for mobile and stationary applications. Toward this goal, rapid advances have been made regarding simulations/modeling techniques and characterization approaches, including high-throughput electrochemical measurements coupled with spectroscopies. Focusing on Li-ion batteries, current developments are analyzed in the field as well as future challenges in order to gain a full description of interfacial processes across multiple length/timescales; from charge transfer to migration/diffusion properties and interphases formation, up to and including their stability over the entire battery lifetime. For such complex and interrelated phenomena, developing a unified workflow intimately combining the ensemble of these techniques will be critical to unlocking their full investigative potential. For this paradigm shift in battery design to become reality, it necessitates the implementation of research standards and protocols, underlining the importance of a concerted approach across the community. With this in mind, major collaborative initiatives gathering complementary strengths and skills will be fundamental if societal and environmental imperatives in this domain are to be met

    Modulation of spinal excitability following neuromuscular electrical stimulation superimposed to voluntary contraction

    Get PDF
    Purpose. Neuromuscular electrical stimulation (NMES) superimposed on voluntary muscle contraction has been recently shown as an innovative training modality within sport and rehabilitation, but its effects on the neuromuscular system are still unclear. The aim of this study was to investigate acute responses in spinal excitability, as measured by the Hoffmann (H) reflex, and in maximal voluntary contraction (MVIC) following NMES superimposed to voluntary isometric contractions (NMES+ISO) compared to passive NMES only and to voluntary isometric contractions only (ISO). Method. Fifteen young adults were required to maintain an ankle plantar-flexor torque of 20% MVC for 20 repetitions during each experimental condition (NMES+ISO, NMES and ISO). Surface electromyography was used to record peak-to-peak Hreflex and motor waves following percutaneous stimulation of the posterior tibial nerve in the dominant limb. An isokinetic dynamometer was used to assess maximal voluntary contraction output of the ankle plantar flexor muscles. Results. H-reflex amplitude was increased by 4.5% after the NMES+ISO condition (p < 0.05), while passive NMES and ISO conditions showed a decrease by 7.8% (p < 0.05) and no change in reflex responses, respectively. There was no change in amplitude of maximal motor wave and in MVIC torque during each experimental condition. Conclusion. The reported facilitation of spinal excitability following NMES+ISO could be due to a combination of greater motor neuronal and corticospinal excitability, thus suggesting that NMES superimposed onto isometric voluntary contractions may provide a more effective neuromuscular stimulus and, hence, training modality compared to NMES alone
    • …
    corecore