334 research outputs found

    The Development of a New Questionnaire to Measure the Burden of Immunoglobulin Treatment in Patients with Primary Immunodeficiencies: The IgBoT-35.

    Get PDF
    Purpose: To describe the development and psychometric testing of a new questionnaire to measure the burden of immunoglobulin treatment (Ig) from the perspective of patients with primary immunodeficiencies (PID). Patients and Methods: An online, cross-sectional survey was administered to PID patients across 10 countries (nine European and Canada) who were receiving either intravenous (IVIg) or subcutaneous (SCIg) immunoglobulin therapy. The range and distribution of the responses (ie, levels of missing data, floor and ceiling effects), exploratory factor analysis (using factor loadings of 0.4 or greater) and measures of internal consistency reliability (ie, Cronbach's alpha coefficient, inter-item and item-total correlations) were used to identify the domain and item pool. Results: In total, 472 patients completed the questionnaire, of which 395 were included in the analysis (32% underwent IVIg and 67% underwent SCIg). The final instrument contained 34 items across eight domains of treatment burden (time, organisation and planning, leisure and social, interpersonal relationships, employment and education, travel, consequences of treatment and emotional) and an additional Ig treatment burden global question at the end of the measure. All the scales achieved good internal reliability (Cronbach's alpha coefficient ranged from 0.70 to 0.85) and, with the exception of one item exceeded the minimum threshold of 0.35 for item-total correlations. Treatment burden was lower than anticipated across the different treatment routes and countries, although overall was more burdensome for patients undergoing IVIg compared to SCIg treatment. Conclusion: The IgBoT-35 appears to be a reliable, patient-generated questionnaire and may help to identify more individualised and preferred therapies for the PID patient when used in clinical practice. A new survey with a sample of US patients is currently being undertaken to further establish its validity and conceptual model. The overall Ig burden of treatment scores appeared to be low. PID patient preferences are important to guide treatment decisions and ensuring patients receive the right treatment at the right time

    Use of Advanced Flexible Modeling Approaches for Survival Extrapolation from Early Follow-up Data in two Nivolumab Trials in Advanced NSCLC with Extended Follow-up

    Get PDF
    Objectives: Immuno-oncology (IO) therapies are often associated with delayed responses that are deep and durable, manifesting as long-term survival benefits in patients with metastatic cancer. Complex hazard functions arising from IO treatments may limit the accuracy of extrapolations from standard parametric models (SPMs). We evaluated the ability of flexible parametric models (FPMs) to improve survival extrapolations using data from 2 trials involving patients with non–small-cell lung cancer (NSCLC). Methods: Our analyses used consecutive database locks (DBLs) at 2-, 3-, and 5-y minimum follow-up from trials evaluating nivolumab versus docetaxel in patients with pretreated metastatic squamous (CheckMate-017) and nonsquamous (CheckMate-057) NSCLC. For each DBL, SPMs, as well as 3 FPMs—landmark response models (LRMs), mixture cure models (MCMs), and Bayesian multiparameter evidence synthesis (B-MPES)—were estimated on nivolumab overall survival (OS). The performance of each parametric model was assessed by comparing milestone restricted mean survival times (RMSTs) and survival probabilities with results obtained from externally validated SPMs. Results: For the 2- and 3-y DBLs of both trials, all models tended to underestimate 5-y OS. Predictions from nonvalidated SPMs fitted to the 2-y DBLs were highly unreliable, whereas extrapolations from FPMs were much more consistent between models fitted to successive DBLs. For CheckMate-017, in which an apparent survival plateau emerges in the 3-y DBL, MCMs fitted to this DBL estimated 5-y OS most accurately (11.6% v. 12.3% observed), and long-term predictions were similar to those from the 5-y validated SPM (20-y RMST: 30.2 v. 30.5 mo). For CheckMate-057, where there is no clear evidence of a survival plateau in the early DBLs, only B-MPES was able to accurately predict 5-y OS (14.1% v. 14.0% observed [3-y DBL]). Conclusions: We demonstrate that the use of FPMs for modeling OS in NSCLC patients from early follow-up data can yield accurate estimates for RMST observed with longer follow-up and provide similar long-term extrapolations to externally validated SPMs based on later data cuts. B-MPES generated reasonable predictions even when fitted to the 2-y DBLs of the studies, whereas MCMs were more reliant on longer-term data to estimate a plateau and therefore performed better from 3 y. Generally, LRM extrapolations were less reliable than those from alternative FPMs and validated SPMs but remained superior to nonvalidated SPMs. Our work demonstrates the potential benefits of using advanced parametric models that incorporate external data sources, such as B-MPES and MCMs, to allow for accurate evaluation of treatment clinical and cost-effectiveness from trial data with limited follow-up. Flexible advanced parametric modeling methods can provide improved survival extrapolations for immuno-oncology cost-effectiveness in health technology assessments from early clinical trial data that better anticipate extended follow-up. Advantages include leveraging additional observable trial data, the systematic integration of external data, and more detailed modeling of underlying processes. Bayesian multiparameter evidence synthesis performed particularly well, with well-matched external data. Mixture cure models also performed well but may require relatively longer follow-up to identify an emergent plateau, depending on the specific setting. Landmark response models offered marginal benefits in this scenario and may require greater numbers in each response group and/or increased follow-up to support improved extrapolation within each subgroup

    Early-life inflammatory markers and subsequent psychotic and depressive episodes between 10 to 28 years of age

    Get PDF
    Inflammation is implicated in depression and psychosis, including association of childhood inflammatory markers on the subsequent risk of developing symptoms. However, it is unknown whether early-life inflammatory markers are associated with the number of depressive and psychotic symptoms from childhood to adulthood. Using the prospective Avon Longitudinal Study of Children and Parents birth cohort (N = up-to 6401), we have examined longitudinal associations of early-life inflammation [exposures: interleukin-6 (IL-6), C-reactive protein (CRP) levels at age 9y; IL-6 and CRP DNA-methylation (DNAm) scores at birth and age 7y; and IL-6 and CRP polygenic risk scores (PRSs)] with the number of depressive episodes and psychotic experiences (PEs) between ages 10–28 years. Psychiatric outcomes were assessed using the Short Mood and Feelings Questionnaire and Psychotic Like Symptoms Questionnaires, respectively. Exposure-outcome associations were tested using negative binomial models, which were adjusted for metabolic and sociodemographic factors. Serum IL-6 levels at age 9y were associated with the total number of depressive episodes between 10 and 28y in the base model (n = 4835; β = 0.066; 95%CI:0.020–0.113; pFDR = 0.041) which was weaker when adjusting for metabolic and sociodemographic factors. Weak associations were observed between inflammatory markers (serum IL-6 and CRP DNAm scores) and total number of PEs. Other inflammatory markers were not associated with depression or PEs. Early-life inflammatory markers are associated with the burden of depressive episodes and of PEs subsequently from childhood to adulthood. These findings support a potential role of early-life inflammation in the aetiology of depression and psychosis and highlight inflammation as a potential target for treatment and prevention

    Iso-osmotic regulation of nitrate accumulation in lettuce (Lactuca sativa L.)

    Get PDF
    Concerns about possible health hazards arising from human consumption of lettuce and other edible vegetable crops with high concentrations of nitrate have generated demands for a greater understanding of processes involved in its uptake and accumulation in order to devise more sustainable strategies for its control. This paper evaluates a proposed iso-osmotic mechanism for the regulation of nitrate accumulation in lettuce (Lactuca sativa L.) heads. This mechanism assumes that changes in the concentrations of nitrate and all other endogenous osmotica (including anions, cations and neutral solutes) are continually adjusted in tandem to minimise differences in osmotic potential of the shoot sap during growth, with these changes occurring independently of any variations in external water potential. The hypothesis was tested using data from six new experiments, each with a single unique treatment comprising a separate combination of light intensity, N source (nitrate with or without ammonium) and nitrate concentration carried out hydroponically in a glasshouse using a butterhead lettuce variety. Repeat measurements of plant weights and estimates of all of the main soluble constituents (nitrate, potassium, calcium, magnesium, organic anions, chloride, phosphate, sulphate and soluble carbohydrates) in the shoot sap were made at intervals from about 2 weeks after transplanting until commercial maturity, and the data used to calculate changes in average osmotic potential in the shoot. Results showed that nitrate concentrations in the sap increased when average light levels were reduced by between 30 and 49 % and (to a lesser extent) when nitrate was supplied at a supra-optimal concentration, and declined with partial replacement of nitrate by ammonium in the external nutrient supply. The associated changes in the proportions of other endogenous osmotica, in combination with the adjustment of shoot water content, maintained the total solute concentrations in shoot sap approximately constant and minimised differences in osmotic potential between treatments at each sampling date. There was, however, a gradual increase in osmotic potential (ie a decline in total solute concentration) over time largely caused by increases in shoot water content associated with the physiological and morphological development of the plants. Regression analysis using normalised data (to correct for these time trends) showed that the results were consistent with a 1:1 exchange between the concentrations of nitrate and the sum of all other endogenous osmotica throughout growth, providing evidence that an iso-osmotic mechanism (incorporating both concentration and volume regulation) was involved in controlling nitrate concentrations in the shoot

    GAMA: towards a physical understanding of galaxy formation

    Full text link
    The Galaxy And Mass Assembly (GAMA) project is the latest in a tradition of large galaxy redshift surveys, and is now underway on the 3.9m Anglo-Australian Telescope at Siding Spring Observatory. GAMA is designed to map extragalactic structures on scales of 1kpc - 1Mpc in complete detail to a redshift of z~0.2, and to trace the distribution of luminous galaxies out to z~0.5. The principal science aim is to test the standard hierarchical structure formation paradigm of Cold Dark Matter (CDM) on scales of galaxy groups, pairs, discs, bulges and bars. We will measure (1) the Dark Matter Halo Mass Function (as inferred from galaxy group velocity dispersions); (2) baryonic processes, such as star formation and galaxy formation efficiency (as derived from Galaxy Stellar Mass Functions); and (3) the evolution of galaxy merger rates (via galaxy close pairs and galaxy asymmetries). Additionally, GAMA will form the central part of a new galaxy database, which aims to contain 275,000 galaxies with multi-wavelength coverage from coordinated observations with the latest international ground- and space-based facilities: GALEX, VST, VISTA, WISE, HERSCHEL, GMRT and ASKAP. Together, these data will provide increased depth (over 2 magnitudes), doubled spatial resolution (0.7"), and significantly extended wavelength coverage (UV through Far-IR to radio) over the main SDSS spectroscopic survey for five regions, each of around 50 deg^2. This database will permit detailed investigations of the structural, chemical, and dynamical properties of all galaxy types, across all environments, and over a 5 billion year timeline.Comment: GAMA overview which appeared in the October 2009 issue of Astronomy & Geophysics, ref: Astron.Geophys. 50 (2009) 5.1

    Galaxy And Mass Assembly (GAMA)

    Get PDF
    The GAMA survey aims to deliver 250,000 optical spectra (3--7Ang resolution) over 250 sq. degrees to spectroscopic limits of r_{AB} <19.8 and K_{AB}<17.0 mag. Complementary imaging will be provided by GALEX, VST, UKIRT, VISTA, HERSCHEL and ASKAP to comparable flux levels leading to a definitive multi-wavelength galaxy database. The data will be used to study all aspects of cosmic structures on 1kpc to 1Mpc scales spanning all environments and out to a redshift limit of z ~ 0.4. Key science drivers include the measurement of: the halo mass function via group velocity dispersions; the stellar, HI, and baryonic mass functions; galaxy component mass-size relations; the recent merger and star-formation rates by mass, types and environment. Detailed modeling of the spectra, broad SEDs, and spatial distributions should provide individual star formation histories, ages, bulge-disc decompositions and stellar bulge, stellar disc, dust disc, neutral HI gas and total dynamical masses for a significant subset of the sample (~100k) spanning both the giant and dwarf galaxy populations. The survey commenced March 2008 with 50k spectra obtained in 21 clear nights using the Anglo Australian Observatory's new multi-fibre-fed bench-mounted dual-beam spectroscopic system (AAOmega).Comment: Invited talk at IAU 254 (The Galaxy Disk in Cosmological Context, Copenhagen), 6 pages, 5 figures, high quality PDF version available at http://www.eso.org/~jliske/gama

    Estimating food production in an urban landscape

    Get PDF
    There is increasing interest in urban food production for reasons of food security, environmental sustainability, social and health benefits. In developed nations urban food growing is largely informal and localised, in gardens, allotments and public spaces, but we know little about the magnitude of this production. Here we couple own-grown crop yield data with garden and allotment areal surveys and urban fruit tree occurrence to provide one of the first estimates for current and potential food production in a UK urban setting. Current production is estimated to be sufficient to supply the urban population with fruit and vegetables for about 30 days per year, while the most optimistic model results suggest that existing land cultivated for food could supply over half of the annual demand. Our findings provide a baseline for current production whilst highlighting the potential for change under the scaling up of cultivation on existing land

    Galaxy Zoo: the dependence of morphology and colour on environment

    Get PDF
    We analyse the relationships between galaxy morphology, colour, environment and stellar mass using data for over 100,000 objects from Galaxy Zoo, the largest sample of visually classified morphologies yet compiled. We conclusively show that colour and morphology fractions are very different functions of environment. Both are sensitive to stellar mass; however, at fixed stellar mass, while colour is also highly sensitive to environment, morphology displays much weaker environmental trends. Only a small part of both relations can be attributed to variation in the stellar mass function with environment. Galaxies with high stellar masses are mostly red, in all environments and irrespective of their morphology. Low stellar-mass galaxies are mostly blue in low-density environments, but mostly red in high-density environments, again irrespective of their morphology. The colour-density relation is primarily driven by variations in colour fractions at fixed morphology, in particular the fraction of spiral galaxies that have red colours, and especially at low stellar masses. We demonstrate that our red spirals primarily include galaxies with true spiral morphology. We clearly show there is an environmental dependence for colour beyond that for morphology. Before using the Galaxy Zoo morphologies to produce the above results, we first quantify a luminosity-, size- and redshift-dependent classification bias that affects this dataset, and probably most other studies of galaxy population morphology. A correction for this bias is derived and applied to produce a sample of galaxies with reliable morphological type likelihoods, on which we base our analysis.Comment: 25 pages, 20 figures (+ 6 pages, 11 figures in appendices); moderately revised following referee's comments; accepted by MNRA
    corecore