840 research outputs found

    Validation of full-wave simulations for mode conversion of waves in the ion cyclotron range of frequencies with phase contrast imaging in Alcator C-Mod

    Get PDF
    Mode conversion of fast waves in the ion cyclotron range of frequencies (ICRF) is known to result in current drive and flow drive under optimised conditions, which may be utilized to control plasma profiles and improve fusion plasma performance. To describe these processes accurately in a realistic toroidal geometry, numerical simulations are essential. Quantitative comparison of these simulations and the actual experimental measurements is important to validate their predictions and to evaluate their limitations. The phase contrast imaging (PCI) diagnostic has been used to directly detect the ICRF waves in the Alcator C-Mod tokamak. The measurements have been compared with full-wave simulations through a synthetic diagnostic technique. Recently, the frequency response of the PCI detector array on Alcator C-Mod was recalibrated, which greatly improved the comparison between the measurements and the simulations. In this study, mode converted waves for D-{superscript 3]He and D-H plasmas with various ion species compositions were re-analyzed with the new calibration. For the minority heating cases, self-consistent electric fields and a minority ion distribution function were simulated by iterating a full-wave code and a Fokker-Planck code. The simulated mode converted wave intensity was in quite reasonable agreement with the measurements close to the antenna, but discrepancies remain for comparison at larger distances.United States. Department of Energy (Grant DE-FG02- 94ER54235

    Radial localization of edge modes in Alcator C-Mod pedestals using optical diagnostics

    Get PDF
    Dedicated experiments in ion cyclotron range heated enhanced D-alpha (EDA) H-mode and I-mode plasmas have been performed on Alcator C-Mod to identify the location of edge fluctuations inside the pedestal and to determine their plasma frame phase velocity. For this purpose, measurements from gas puff imaging (GPI) and gas puff charge exchange recombination spectroscopy (GP-CXRS) have been collected using the same optical views. The data suggest that the EDA H-mode-specific quasi-coherent mode (QCM) is centered near the radial electric field (E r) well minimum and propagates along the ion diamagnetic drift direction in the plasma frame. The weakly coherent mode (WCM) and the geodesic acoustic mode observed in I-mode, on the other hand, are found to be located around the outer shear layer of the E r well. This results in a weak plasma frame phase velocity mostly along the electron diamagnetic drift direction for the WCM. The findings in these EDA H-mode plasmas differ from probe measurements in ohmic EDA H-mode (LaBombard et al 2014 Phys. Plasmas 21 056108), where the QCM was identified as an electron drift-wave located several mm outside the E r well minimum in a region of positive E r. To explore if instrumental effects of the optical diagnostics could be the cause of the difference, a synthetic diagnostic for GPI is introduced. This diagnostic reproduces amplitude ratios and relative radial shifts of the mode profiles determined from poloidally and toroidally oriented optics and, if instrumental effects related to GP-CXRS are also included, indicates that the measured location of the QCM and WCM relative to the E r well reported here is only weakly affected by instrumental effects

    An Investigation of Abstract Construal on Impression Formation: A Multi-Lab Replication of McCarthy and Skowronski (2011)

    Get PDF
    Perceivers often view individuals described as “warm” to be generally positive and individuals described as “cold” to be generally negative. Consistent with the tenets of Construal Level Theory, McCarthy and Skowronski (2011) demonstrated this difference was larger among perceivers who were instructed the information was psychologically distant rather than psychologically near; however, those results have never been subjected to replication attempts. To test the replicability of those results, we closely replicated the methods of McCarthy and Skowronski (2011) Study 1b at eight separate data collection sites and pooled the results into a random-effects meta-analysis. Within the replication attempts, the overall effect was not significantly different from zero (d = 0.10, 95% CI [–0.01, 0.22]) and an equivalence test confirmed this effect was smaller than our smallest effect size of interest. However, when the original study was incorporated into the meta-analysis, the overall effect was significantly different from zero in the theoretically-consistent direction (d = 0.13, 95% CI [0.02, 0.24]). The weight of the overall evidence suggests the traits “warm” and “cold” are more influential among participants who were presented with information that was psychologically distant; however, this effect is small. Future research should try to identify more potent moderators, which would make the effect more affordable to detect

    Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data

    Get PDF
    We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10^(-24). These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10^(-5) for the four closest pulsars

    Integrated information increases with fitness in the evolution of animats

    Get PDF
    One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their behavior in complex environments. How this capability can be quantified and related to the functional complexity of an organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We present here several candidate measures that quantify information and integration, and study their dependence on fitness as an artificial agent ("animat") evolves over thousands of generations to solve a navigation task in a simple, simulated environment. We compare the ability of these measures to predict high fitness with more conventional information-theoretic processing measures. As the animat adapts by increasing its "fit" to the world, information integration and processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with information integration and with processing measures implies that high fitness requires both information processing as well as integration, but that information integration may be a better measure when the task requires memory. A correlation of measures of information integration (but also information processing) and fitness strongly suggests that these measures reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even in the absence of fitness data.Comment: 27 pages, 8 figures, one supplementary figure. Three supplementary video files available on request. Version commensurate with published text in PLoS Comput. Bio

    Searching for gravitational waves from known pulsars

    Get PDF
    We present upper limits on the amplitude of gravitational waves from 28 isolated pulsars using data from the second science run of LIGO. The results are also expressed as a constraint on the pulsars' equatorial ellipticities. We discuss a new way of presenting such ellipticity upper limits that takes account of the uncertainties of the pulsar moment of inertia. We also extend our previous method to search for known pulsars in binary systems, of which there are about 80 in the sensitive frequency range of LIGO and GEO 600.Comment: Accepted by CQG for the proceeding of GWDAW9, 7 pages, 2 figure

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 102210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi
    corecore