50 research outputs found

    T cells can mediate viral clearance from ependyma but not from brain parenchyma in a major histocompatibility class I- and perforin-independent manner

    Get PDF
    Viral infection of the central nervous system can lead to disability and death. Yet the majority of viral infections with central nervous system involvement resolve with only mild clinical manifestations, if any. This is generally attributed to efficient elimination of the infection from the brain coverings, i.e. the meninges, ependyma and chorioplexus, which are the primary targets of haematogeneous viral spread. How the immune system is able to purge these structures from viral infection with only minimal detrimental effects is still poorly understood. In the present work we studied how an attenuated lymphocytic choriomeningitis virus can be cleared from the central nervous system in the absence of overt disease. We show that elimination of the virus from brain ependyma, but not from brain parenchyma, could be achieved by a T cell-dependent mechanism operating independently of major histocompatibility class I antigens and perforin. Considering that cytotoxic T lymphocyte-mediated cytotoxicity is a leading cause of viral immunopathology and tissue damage, our findings may explain why the most common viral intruders of the central nervous system rarely represent a serious threat to our healt

    Innate and adaptive immune control of genetically engineered live-attenuated arenavirus vaccine prototypes

    Get PDF
    Arenaviruses such as Lassa virus (LASV) cause significant morbidity and mortality in endemic areas. Using a glycoprotein (GP) exchange strategy, we have recently developed live-attenuated arenavirus vaccine prototypes (rLCMV/VSVG) based on lymphocytic choriomeningitis virus (LCMV), a close relative of LASV. rLCMV/VSVG induced long-term CD8+ T cell immunity against wild-type virus challenge and exhibited a stably attenuated phenotype in vivo. Here we elucidated the innate and adaptive immune requirements for the control of rLCMV/VSVG. Infection of RAG−/− mice resulted in persisting viral RNA in blood but not in overt viremia. The latter was only found in mice lacking both RAG and IFN type I receptor. Conversely, absence of IFN type II signaling or NK cells on an RAG-deficient background had only minor effects on vaccine virus load or none at all. rLCMV/VSVG infection of wild-type mice induced less type I IFN than did wild-type LCMV, and type I as well as type II IFNs were dispensable for the induction of virus-specific memory CD8 T cells and virus-neutralizing antibodies by rLCMV/VSVG. In conclusion, the adaptive immune systems are essential for elimination of rLCMV/VSVG, and type I but not type II IFN plays a major contributive role in lowering rLCMV/VSVG loads in vivo, attesting to the attenuation profile of the vaccine. Nevertheless, IFNs are not required for the induction of potent vaccine responses. These results provide a better understanding of the immunobiology of rLCMV/VSVG and will contribute to the further development of GP exchange vaccines for combating arenaviral hemorrhagic fever

    Envelope Exchange for the Generation of Live-Attenuated Arenavirus Vaccines

    Get PDF
    Arenaviruses such as Lassa fever virus cause significant mortality in endemic areas and represent potential bioterrorist weapons. The occurrence of arenaviral hemorrhagic fevers is largely confined to Third World countries with a limited medical infrastructure, and therefore live-attenuated vaccines have long been sought as a method of choice for prevention. Yet their rational design and engineering have been thwarted by technical limitations. In addition, viral genes had not been identified that are needed to cause disease but can be deleted or substituted to generate live-attenuated vaccine strains. Lymphocytic choriomeningitis virus, the prototype arenavirus, induces cell-mediated immunity against Lassa fever virus, but its safety for humans is unclear and untested. Using this virus model, we have developed the necessary methodology to efficiently modify arenavirus genomes and have exploited these techniques to identify an arenaviral Achilles' heel suitable for targeting in vaccine design. Reverse genetic exchange of the viral glycoprotein for foreign glycoproteins created attenuated vaccine strains that remained viable although unable to cause disease in infected mice. This phenotype remained stable even after extensive propagation in immunodeficient hosts. Nevertheless, the engineered viruses induced T cell–mediated immunity protecting against overwhelming systemic infection and severe liver disease upon wild-type virus challenge. Protection was established within 3 to 7 d after immunization and lasted for approximately 300 d. The identification of an arenaviral Achilles' heel demonstrates that the reverse genetic engineering of live-attenuated arenavirus vaccines is feasible. Moreover, our findings offer lymphocytic choriomeningitis virus or other arenaviruses expressing foreign glycoproteins as promising live-attenuated arenavirus vaccine candidates

    Arabidopsis RETINOBLASTOMA RELATED directly regulates DNA damage responses through functions beyond cell cycle control

    Get PDF
    The rapidly proliferating cells in plant meristems must be protected from genome damage. Here, we show that the regulatory role of the Arabidopsis RETINOBLASTOMA RELATED (RBR) in cell proliferation can be separated from a novel function in safeguarding genome integrity. Upon DNA damage, RBR and its binding partner E2FA are recruited to heterochromatic γH2AX-labelled DNA damage foci in an ATM- and ATR-dependent manner. These γH2AX-labelled DNA lesions are more dispersedly occupied by the conserved repair protein, AtBRCA1, which can also co-localise with RBR foci. RBR and AtBRCA1 physically interact in vitro and in planta. Genetic interaction between the RBR-silenced amiRBR and Atbrca1 mutants suggests that RBR and AtBRCA1 may function together in maintaining genome integrity. Together with E2FA, RBR is directly involved in the transcriptional DNA damage response as well as in the cell death pathway that is independent of SOG1, the plant functional analogue of p53. Thus, plant homologs and analogues of major mammalian tumour suppressor proteins form a regulatory network that coordinates cell proliferation with cell and genome integrity

    Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA

    Get PDF
    Recently, biological roles of extracellular vesicles (which include among others exosomes, microvesicles and apoptotic bodies) have attracted substantial attention in various fields of biomedicine. Here we investigated the impact of sustained exposure of cells to the fluoroquinolone antibiotic ciprofloxacin on the released extracellular vesicles. Ciprofloxacin is widely used in humans against bacterial infections as well as in cell cultures against Mycoplasma contamination. However, ciprofloxacin is an inducer of oxidative stress and mitochondrial dysfunction of mammalian cells. Unexpectedly, here we found that ciprofloxacin induced the release of both DNA (mitochondrial and chromosomal sequences) and DNA-binding proteins on the exofacial surfaces of small extracellular vesicles referred to in this paper as exosomes. Furthermore, a label-free optical biosensor analysis revealed DNA-dependent binding of exosomes to fibronectin. DNA release on the surface of exosomes was not affected any further by cellular activation or apoptosis induction. Our results reveal for the first time that prolonged low-dose ciprofloxacin exposure leads to the release of DNA associated with the external surface of exosomes

    Real-life experience with switching TNF-α inhibitors in ankylosing spondylitis

    Get PDF
    Objective: The aim of this study was to evaluate the efficacy, reasons for switching and drug survival of TNF-α inhibitors (TNFis) used as first- and second-line drugs in ankylosing spondylitis (AS). Methods: Data on patients suffering from AS and treated with at least one TNFi between November 2005 and 2013 were extracted retrospectively from the database of a single clinical centre. Beside demographic data, the disease activity measured by the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), the response rates (BASDAI50), reasons for switching and survival curves of TNFis were analysed in general and in subgroups of patients treated with each of the available TNFis. The reasons for switching were defined as inefficacy, side effects of the given drug, patient's request and occurrence of extra-articular manifestations. Results: Altogether, 175 patients were on TNFis and 77 of them received at least two TNFis. The patients' age at the initiation of the first TNFi was higher among switchers compared to non-switchers (42.5 ± 12.6 vs. 38.8 ± 11.2 years, p = 0.049); otherwise, gender, disease duration and initial disease activity had no influence on the risk of switching. The decrease of the BASDAI was similar among non-switchers and switchers using either the first or second TNFi, but the response rates to the first and second TNFi were worse in switchers than in non-switchers. Following the failure of the first TNFi, the retention on therapy was unfavourable, especially in patients on infliximab after 1 year of treatment. The main reason for switching from the first drug was inefficacy. The frequency of side effects that led to switching was higher in the infliximab group than in patients treated with other agents. Conclusion: Although the retention rate to a second-line TNFi was somewhat worse than that to the first-line TNFi, the switching of TNFis is a good therapeutic option in AS patients who failed to respond to the first TNFi. © Springer-Verlag 2014

    Genetic heterogeneity of motor neuropathies.

    Get PDF
    OBJECTIVE: To study the prevalence, molecular cause, and clinical presentation of hereditary motor neuropathies in a large cohort of patients from the North of England. METHODS: Detailed neurologic and electrophysiologic assessments and next-generation panel testing or whole exome sequencing were performed in 105 patients with clinical symptoms of distal hereditary motor neuropathy (dHMN, 64 patients), axonal motor neuropathy (motor Charcot-Marie-Tooth disease [CMT2], 16 patients), or complex neurologic disease predominantly affecting the motor nerves (hereditary motor neuropathy plus, 25 patients). RESULTS: The prevalence of dHMN is 2.14 affected individuals per 100,000 inhabitants (95% confidence interval 1.62-2.66) in the North of England. Causative mutations were identified in 26 out of 73 index patients (35.6%). The diagnostic rate in the dHMN subgroup was 32.5%, which is higher than previously reported (20%). We detected a significant defect of neuromuscular transmission in 7 cases and identified potentially causative mutations in 4 patients with multifocal demyelinating motor neuropathy. CONCLUSIONS: Many of the genes were shared between dHMN and motor CMT2, indicating identical disease mechanisms; therefore, we suggest changing the classification and including dHMN also as a subcategory of Charcot-Marie-Tooth disease. Abnormal neuromuscular transmission in some genetic forms provides a treatable target to develop therapies

    Definition and application of ethanol equivalent:sustainability performance metrics for biomass conversion to carbon-based fuels and chemicals

    No full text
    Ethanol equivalent (EE) is defined as the mass of ethanol needed to deliver the equivalent amount of energy from a given feedstock using energy equivalency or produce the equivalent amount of mass of a carbon based chemical using molar equivalency. The production of ethanol from biomass requires energy, which in a sustainable world could be produced from biomass. Therefore, we also define a real ethanol equivalent (EEx) indicating that the ethanol equivalent also includes the use of 1 unit of bioethanol to produce x units of bioethanol. Thus, the abbreviation EE2.3 used in this paper shows a 2.3 output/input bioethanol ratio or efficiency. Calculations of the corresponding mass of corn and size of landwere based on the first generation corn-based bioethanol technology as commercially practiced in the US in 2008. Since the total energy and essential materials requirements of a given process can be calculated, the EE2.3 of a production process or even a total technology can be estimated. We show that the EE2.3 could be used as a translational tool between fossil-and biomass-based feedstocks, products, processes, and technologies. Since the EE2.3 can be readily determined for any given biomass-based technology, the required mass of biomass feedstock, the size of land, and even the volume of water can be calculated. Scenario analyses based on EE2.3 could better visualize the demands of competing technologies on the environment both for the experts and to the general public. While differentiating between 1, 1000, and 100,000 BTUs for different options is rather difficult for most people, comparing the amount of the land needed to produce the same amount of energy or mass via different technologies is more straightforward. (C) 2014 Elsevier B.V. All rights reserved

    mTOR signaling mediates ILC3-driven immunopathology

    Get PDF
    Innate lymphoid cells (ILCs) have a protective immune function at mucosal tissues but can also contribute to immunopathology. Previous work has shown that the serine/threonine kinase mammalian target of rapamycin complex 1 (mTORC1) is involved in generating protective ILC3 cytokine responses during bacterial infection. However, whether mTORC1 also regulates IFN-γ-mediated immunopathology has not been investigated. In addition, the role of mTORC2 in ILC3s is unknown. Using mice specifically defective for either mTORC1 or mTORC2 in ILC3s, we show that both mTOR complexes regulate the maintenance of ILC3s at steady state and pathological immune response during colitis. mTORC1 and to a lesser extend mTORC2 promote the proliferation of ILC3s in the small intestine. Upon activation, intestinal ILC3s produce less IFN-γ in the absence of mTOR signaling. During colitis, loss of both mTOR complexes in colonic ILC3s results in the reduced production of inflammatory mediators, recruitment of neutrophils and immunopathology. Similarly, treatment with rapamycin after colitis induction ameliorates the disease. Collectively, our data show a critical role for both mTOR complexes in controlling ILC3 cell numbers and ILC3-driven inflammation in the intestine
    corecore