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T cells can mediate viral clearance from
ependyma but not from brain parenchyma in
a major histocompatibility class I- and
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Viral infection of the central nervous system can lead to disability and death. Yet the majority of viral infections with central

nervous system involvement resolve with only mild clinical manifestations, if any. This is generally attributed to efficient

elimination of the infection from the brain coverings, i.e. the meninges, ependyma and chorioplexus, which are the primary

targets of haematogeneous viral spread. How the immune system is able to purge these structures from viral infection with only

minimal detrimental effects is still poorly understood. In the present work we studied how an attenuated lymphocytic chor-

iomeningitis virus can be cleared from the central nervous system in the absence of overt disease. We show that elimination of

the virus from brain ependyma, but not from brain parenchyma, could be achieved by a T cell-dependent mechanism operating

independently of major histocompatibility class I antigens and perforin. Considering that cytotoxic T lymphocyte-mediated

cytotoxicity is a leading cause of viral immunopathology and tissue damage, our findings may explain why the most

common viral intruders of the central nervous system rarely represent a serious threat to our health.
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Introduction
Viruses are the most common infectious intruders to the CNS and

remain a significant source of neurological morbidity and mortality

worldwide. The United States Centres for Disease Control and

Prevention estimate that �20 000 cases of clinically manifested

viral CNS infections occur in the United States each year. In addi-

tion, and vastly exceeding these numbers, many of the common

viral infections ‘silently’ (i.e. in the absence of clinical symptoms or

overt disease) involve the CNS, or exhibit mild manifestations that

do not require diagnostic or therapeutic intervention. Hence, they

are not included in the above statistics (Logan and MacMahon,

2008). Mumps in the pre-vaccine era is a classic example of a viral

infection frequently accompanied by meningitis. CNS involvement

occurred in an estimated 50% of all infected individuals but mostly

went unrecognized and resolved without complications or seque-

lae (Johnstone et al., 1972; Hviid et al., 2008). Similar frequencies

of CNS involvement were observed during acute but uncompli-

cated systemic infection with measles (Gibbs et al., 1959;

Hanninen et al., 1980). Clinically, investigation of the topic has

been hampered by the fact that it requires sampling of CSF, an

intervention difficult to justify given the mostly benign and spon-

taneous outcome. Hence, similarly frequent mild CNS involvement

as in measles and mumps is also suspected for other viruses such

as influenza virus (Fujimoto et al., 1998) or coxsackie B virus

(Rubin et al., 1958), which are nowadays more widespread.

However, laboratory confirmation is not available.

Viral infections of the CNS are classified pathologically into

those restricted to the parenchyma (encephalitis) and those that

predominantly affect the coverings of the CNS (i.e. meninges,

ependyma and chorioplexus), although some overlap of these

categories is frequently observed. The majority of viral CNS infec-

tions result from haematogeneous dissemination and are initially

confined to the CNS coverings (Fields et al., 2006). Often clinically

manifested as ‘aseptic meningitis’, this syndrome summarizes a

group of disorders with a typically mild and self-limiting course

of disease (Adair et al., 1953; Irani, 2008). It is generally assumed

that immunocompetent individuals eliminate these infections from

the CNS coverings before a substantial parenchymal infection can

be established, and thus before substantial damage occurs.

Furthermore, properties intrinsic to the virus (cellular tropism,

cytolytic potential) and host parameters such as age (e.g. neonatal

versus adult life, thereby affecting the level of immunological com-

petence) influence whether the virus remains restricted to the

brain coverings or whether it also affects the CNS parenchyma.

Numerous DNA and RNA viruses including enteroviruses, morbilli-

viruses, herpes viruses, lentiviruses, flaviviruses and arenaviruses

are able to spread into the brain coverings in humans (Lee and

Davies, 2007). How they gain access to the CNS has been studied

extensively, and much effort has been given to elucidating

virus-host interactions and immune defence in the brain parench-

yma (Griffin, 2003; Hausmann et al., 2005; McGavern, 2005;

Bergmann et al., 2006; Ercolini and Miller, 2006; Tishon et al.,

2006). However, less is known about how infected hosts silently

cleanse the CNS coverings from viral infection, and thus how they

prevent not only serious complications from meningitis, but also

viral spread into the parenchyma.

Lymphocytic choriomeningitis virus (LCMV) represents the pro-

totypic member of the arenavirus family and is widely used to

study the dichotomous role of the antiviral immune response in

host protection and pathogenesis (Zinkernagel and Doherty, 1974;

Ahmed and Gray, 1996; Oldstone, 2007). LCMV is a natural

mouse pathogen but it is also suspected to be an underestimated

cause of aseptic meningitis in humans (Meyer et al., 1960; Jahrling

and Peters, 1992). As in humans, LCMV has the capacity to infect

the brain coverings of mice, and from there it gradually spreads

into the parenchyma (Thomsen, 2009). Intracerebral inoculation of

adult mice with LCMV has been studied for decades to define the

mechanisms underlying viral pathogenesis and immunopathology

in the CNS. After intracerebral administration most of the inocu-

lum is drained into the systemic circulation (Mims, 1960), initiating

a vigorous immune response. At the same time, the virus repli-

cates in the leptomeninges, choroid plexus and ependymal cells

(Lillie, 1945; Wilsnack and Rowe, 1964). LCMV is non-cytolytic in

mice, and hence the ensuing CNS disease is solely caused by the

immune response attacking the virus infection in the CNS.

Accordingly, T cell-depleted mice are resistant to LCMV-induced

fatal choriomeningitis (Cole et al., 1972). Histological examination

shows massive leucocyte infiltrates accumulating in the meningeal

and ventricular region of the brain 6–8 days after infection, con-

comitant with the onset of rapidly progressing convulsions and

death. In addition to these events in the brain coverings, T cell

infiltration has also been observed within the brain parenchyma,

and clinical disease has mostly been attributed to the latter part of

the inflammatory response (Christensen et al., 2004). CD8+ T cells

have long been identified as key players indispensable for disease

(Cole et al., 1972; Andersen et al., 1991). Yet recently the recruit-

ment of myelomonocytic cells was also found to be an important

step in pathogenesis (Kim et al., 2009), at least for the early man-

ifestation of the disease.

In contrast to the vast majority of humans with viral infection of

the CNS surface, intracerebral infection of mice with wild-type

LCMV strains is almost invariably lethal, even at the minimal infec-

tious dose (Bonilla et al., 2002). Thus, acute LCMV meningitis in

mice is only of limited use for investigating how a primary immune

response can purge viruses from the brain coverings without caus-

ing overt disease.

Therefore, using arenavirus reverse genetics, we recently gener-

ated an attenuated LCM virus exhibiting a fundamentally different

virus–host balance: recombinant LCMV expressing the surface gly-

coprotein of vesicular stomatitis virus (rLCMV/INDG) instead of

its own glycoprotein (Fig. 1A). Unlike wild-type LCMV such as

the Armstrong strain, rLCMV/INDG fails to cause disease

in intracerebral-infected adult mice (Pinschewer et al., 2003;

Bergthaler et al., 2006; Merkler et al., 2006). Nevertheless, it

establishes persistent infection in the CNS of immunodeficient

hosts (Merkler et al., 2006) owing to its non-cytolytic behaviour.

As an additional important difference to wild-type LCMV, rLCMV/

INDG replicates only in the CNS. Even in recombination-activating

gene (RAG)-deficient mice lacking T and B cells, interferon type I

prevents viral replication in other tissues (Merkler et al., 2006). In

several other model systems, viral elimination from the CNS can
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be affected by ongoing viral replication at additional sites, partic-

ularly when the virus overwhelms the host to cause immune

exhaustion (Wherry and Ahmed, 2004). Thus the rLCMV/INDG

model is well suited to study viral CNS clearance in mouse models

with defects in adaptive immunity.

In the present work we used this experimental model to dissect

the individual contribution of key components and pathways of the

adaptive immune response in purging a non-cytolytic virus infection

from the CNS in the absence of severe disease. Our results indicate

that viral elimination from ependymal cells can be achieved in a

T cell-dependent manner that occurs independently of major histo-

compatibility complex (MHC) class I and perforin, whereas the cyto-

lytic mechanisms of cytotoxic T cells become essential once the

virus has gained access to the parenchyma, notably to glial cells.

Figure 1 Genome organization, viral spread and blood brain barrier integrity following intracerebral infection with either LCMV Armstrong

or rLCMV/INDG. (A) Schema of the LCMV-Armstrong (LMCV-ARM) and rLCMV/INDG genomes. Both viruses consist of two

single-stranded negative-strand RNA segments, encoding two viral genes in ambisense orientation each. The long (L) segment encodes for

the RNA-dependent RNA polymerase L and for the matrix protein Z, while the short (S) segment carries the GP and NP genes. rLCMV/INDG

was created by substituting the LCMV-GP gene for vesicular stomatitis virus-INDG (Pinschewer et al., 2003). (B–E) C57BL/6 mice were

infected intracerebrally with rLCMV/INDG or LCMV-ARM as indicated or were left uninfected. (B and C) Viral S-segment (S seg.) RNA in

brain was detected at the indicated day (d) after intracerebral infection by northern blot (ethidium bromide staining of 28S rRNA indicates

loading control; lanes represent individual animals). (D) Immunohistochemical detection of LCMV-NP confirms reduced spread of rLCMV/

INDG as compared to LCMV-Armstrong. Note that LCMV- Armstrong (Days 4 and 6) and also rLCMV/INDG (Day 6) spreads into some

subependymal cells (arrows). (E) At Day 6 after infection, animals were given horseradish peroxide (HRP) intravenously. One hour later, they

were sacrificed for detection of horseradish peroxidase leakage into the brain parenchyma, indicative of blood brain barrier breakdown.

Representative pictures of horseradish peroxidase reactions are shown (n = 3–4 animals per group). Scale bar for D: 100 mm; for E: 500 mm.
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Materials and methods

Mice
C57BL/6 wild-type mice, recombination activation gene 2 deficient

mice (RAG�/�(Chen et al., 1993a)), B cell deficient mice (JHT�/�

(Chen et al., 1993b)), T cell deficient mice (TCRb��/� (Mombaerts

et al., 1994)), major histocompatibility complex (MHC) class

I-deficient (b2m�/� (Koller et al., 1990) and KbDb�/� (Perarnau

et al., 1999)), major histocompatibility complex class II deficient

mice MHCII�/� (Kontgen et al., 1993), perforin deficient mice PKO

(Kagi et al., 1994), TNF receptor double deficient mice (TNFR1/2�/�

(Peschon et al., 1998)), FAS deficient mice (FAS�/� (Adachi et al.,

1995)), CD8 deficient mice (CD8�/� (Fung-Leung et al., 1991)) and

interferon gamma deficient (GKO (Dalton et al., 1993)) mice (on

C57BL/6 background) as well as 129Sv/Ev wild-type mice and inter-

feron gamma receptor deficient mice (IFNGR�/� (Huang et al., 1993))

on a 129Sv/Ev background were bred at the Institute of Laboratory

Animal Science, University of Zurich and housed under specific patho-

gen-free conditions during all experiments. Animal experiments were

carried out at the University of Zurich with authorization by the can-

tonal veterinary office and in accordance with the Swiss law for animal

protection, and at the University of Göttingen with the authorization

by the district government in Braunschweig, in accordance with the

German law for animal protection.

Viruses, virus titrations, inoculations
and determination of neutralizing
antibodies
Virus stocks were prepared, infectivity was quantified and vesicular

stomatitis virus neutralizing antibodies were determined as described

previously (Pinschewer et al., 2004). For intracerebral inoculations,

3�103 plaque forming units of the Armstrong strain of LCMV or

rLCMV/INDG were administered in a volume of 30ml through the

vertex of the skull using a 27 gauge needle. For intravenous infection,

2�104 plaque forming units of the Armstrong strain of LCMV in a

volume of 200ml were administered into the tail vein. Vesicular sto-

matitis virus-hyperimmune serum (Pinschewer et al., 2004) was

administered i.p.

Detection of viral RNA

Viral S segment (�3.4 kb) was detected by northern hybridization as

described previously (Pinschewer et al., 2003). A quantitive TaqMan

reverse transcribed (RT)-PCR protocol targeting the LCMV-

nucleoprotein (NP) gene (to be described elsewhere) was used to

quantify rLCMV/INDG S segment copies in the brain of infected

mice. Arbitrary viral RNA units were determined in a multiplex assay

with a commercial kit for detection of the housekeeping gene GAPDH,

serving as internal reference (Applied Biosystems).

Cytotoxicity assays and enumeration
of epitope-specific CD8+ T cells
Specific cytotoxic T cell activity of splenocytes was assayed in a 51Cr

release assay and epitope-specific CD8+ T cells were enumerated using

MHC class I tetramers as described (Bergthaler et al., 2006).

Histopathology
CNS tissue was prepared in hepes-glutamic acid buffer-mediated

organic solvent protection effect (HOPE) fixative (DCS Innovative)

(Olert et al., 2001) and embedded in paraffin as described pre-

viously (Bergthaler et al., 2007). Mice were not perfused prior to

tissue collection and fixation since rLCMV/INDG does not replicate

outside the CNS, and blood contains neither free infectivity nor

circulating infected cells (Merkler et al., 2006). Upon inactivation

of endogenous peroxidases (phosphate buffered saline/0.3% hydro-

gen peroxide, 30 min) and blocking (phosphate buffered saline/10%

foetal calf serum), sections were stained with primary antibodies:

mouse anti-neuronal nuclei NeuN (Chemicon International), mouse

anti-glial fibrillary acidic protein (astrocytes; Dako), mouse

anti-NogoA [oligodendrocytes, mAb11c7 (Oertle et al., 2003),

kindly provided by M. E. Schwab, Brain Research Institute, Zurich],

rat anti-mouse CD8 (BD PharMingen), rabbit anti-ionized calcium

binding adaptor-1 (microglia/macrophages; Wako Pure Chemical

Industries Ltd.), rabbit anti-Factor VIII (von Willebrand Factor;

endothelia; Abcam) and rat anti-LCMV NP (VL-4, Battegay et al.,

1991). Bound primary antibodies were visualized either by an

avidin-biotin technique with 3,30-diaminobenzidine or alkaline phos-

phatase/anti-alkaline phosphatase as chromogens (haemalaun coun-

terstaining of nuclei) for light microscopy or with the appropriate

species-specific Cy3- or Cy2-conjugated secondary antibodies (all

from Jackson ImmunoResearch Laboratories Inc.) with 4’,6-diamidi-

no-2-phenylindole (Sigma-Aldrich) nuclei counterstaining for fluores-

cence microscopy. To assess cellular distribution of LCMV at least

130 LCMV-NP+ cells per staining and group (average 416�123

cells) were evaluated at �400 magnification. Number of

LCMV-NP+ cells allocated to a given cellular subtypes were

expressed as percent of total allocated LCMV NP+ cells.

Assessment of blood brain barrier
breakdown
Damage to the blood brain barrier was visualized by intravenous injec-

tion of 400ml of 2% horseradish peroxidase (Sigma) dissolved

in phosphate-buffered saline (Claudio et al., 1990; Hawkins et al.,

1990). Horseradish peroxidase leakage into the brain parenchyma

was made evident in horseradish peroxidase reactions on 6 mm-thick

snap-frozen sections of brain tissue.

Statistical analysis
ANOVA with Bonferroni post test was used for the comparison of

individual values from multiple groups. Viral RNA units were

log-transformed for statistical analysis. Differences in individual

values between two groups were analysed by t-tests (unpaired,

two-tailed) and virus clearance was compared in log rank tests.

These analyses were performed using GraphPad Prism software ver-

sion 4.0b. Two-way ANOVA with Bonferroni’s post test for a com-

bined analysis of values from two groups in two independent

experiments was performed using SPSS version 13.0. P-values 50.05

were considered statistically significant (�) and P-values 50.01 were

considered highly significant (��), whereas P-values 40.05 were con-

sidered statistically not significant.
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Results

Reduced spread of rLCMV/INDG in CNS
coverings correlates with a largely intact
blood brain barrier
We first infected mice intracerebrally with rLCMV/INDG or with

its wild-type counterpart LCMV Armstrong, and compared the

viral burden in CNS and its topographical distribution over time.

Northern blot analysis of LCMV Armstrong-infected brain tissue

detected similar amounts of viral RNA on Day 4 as on Day 6

when the animals displayed signs of terminal disease (Fig. 1B). In

addition, LCMV Armstrong RNA was also detectable in spleen

on Days 1 and 4 after infection (Supplementary Fig. S1). By the

same methods, rLCMV/INDG RNA became detectable no earlier

than at Day 6, and was eliminated by Day 8 (Fig. 1B and C). In

agreement with our previous findings (Merkler et al., 2006),

rLCMV/INDG RNA could not be detected in spleen or liver at

any time point (Supplementary Fig. S1). Northern hybridization

had suggested lower levels of rLCMV/INDG than of Armstrong

in the CNS (Fig. 1B), which was confirmed by histological ana-

lysis (Fig. 1D). Both viruses were mostly restricted to the brain

coverings (i.e. leptomeninges, ependyma and chorioplexus).

However, rLCMV/INDG infected far fewer cells than

Armstrong, both on Day 4 and 6 after infection. rLCMV/INDG

was found in small foci and in isolated infected cells of lepto-

meninges and ependyma on Day 4, in somewhat larger patches

of infected cells of the same structures on Day 6 after infection,

and was cleared thereafter (Days 8 and 14, Fig. 1D). In contrast,

as early as on Day 4 Armstrong-infected cells formed a contin-

uous layer comprising meninges, ependymal cells and choroid

plexus. Furthermore, a small but consistent fraction of parench-

ymal cells in close proximity to the ventricular ependyma

(referred to as ‘subependymal cells’) were also infected, as pre-

viously reported (Christensen et al., 2004) (arrows in Fig. 1D).

We further analysed the integrity of the blood brain barrier at

Day 6 after infection with either LCMV Armstrong or rLCMV/

INDG. This time point was chosen for analysis since rLCMV/

INDG RNA levels and T cell infiltrates were highest (Fig. 1B

and text below) and also because of terminal disease in LCMV

Armstrong-infected animals (Fig. 1E). Extensive disruption of the

blood brain barrier was found in LCMV Armstrong infection,

which was evident in widespread leakage of intravenously

administered horseradish peroxidase into the brain parenchyma,

confirming earlier observations in LCMV-infected mice (Marker

et al., 1984; Andersen et al., 1991). In contrast, the blood brain

barrier was only very modestly affected in rLCMV/INDG-infected

animals. rLCMV/INDG is known to persist in the brain of immu-

nodeficient hosts, such as neonates, without causing disease

(Pinschewer et al., 2003; Bergthaler et al., 2006; Merkler

et al., 2006). Hence the present data indicate that adult infec-

tion of mice with rLCMV/INDG provides a useful model to

study basic mechanisms of silent immune-mediated viral clear-

ance from the brain coverings.

The benign course of intracerebral
rLCMV/INDG infection is not due
to an altered antiviral cytotoxic
T cell response
We had previously demonstrated that the failure of rLCMV/INDG

to elicit fatal choriomeningitis was not due to its lack of LCMV

glycoprotein (Fig. 1A) as an antigenic target of the cytotoxic T cell

response to LCMV Armstrong (Bergthaler et al., 2006). We had

also shown that intracerebral rLCMV/INDG infection induces cyto-

toxic T cell responses of high frequency and long-lived protective

capacity (Bergthaler et al., 2006). Yet LCMV Armstrong-induced

cytotoxic T cells reached even higher frequencies and exhibited far

higher cytotoxic activity in primary ex vivo cytotoxic T cell assays

(Pinschewer et al., 2004). This difference in cytotoxic T cell

response rather than the viral ability to spread in the CNS could

thus have accounted for the differential clinical outcome after

rLCMV/INDG and LCMV Armstrong infection. To address this

possibility, we infected mice simultaneously with rLCMV/INDG

and/or LCMV Armstrong using the intracerebral and intravenous

routes in various combinations (Fig. 2A). Besides recording the

clinical outcome (Fig. 2A), we used MHC class I tetramers to

Figure 2 Absence of disease after rLCMV/INDG intracerebral

infection is not due to altered antiviral cytotoxic T cell response.

(A) C57BL/6 mice were infected by the intravenous and

intracerebral route with LCMV-Armstrong (LCMV-ARM) and/or

rLCMV/INDG in various combinations as indicated in the chart,

summarizing also the clinical outcome of infection. Animals

exhibiting clinical signs of terminal choriomeningitis were

euthanized in accordance with the Swiss law for animal

protection. (B) NP396-specific (expressed by both viruses)

and GP33-specific (expressed by LCMV-ARM) CD8+ T cells

in blood were enumerated on Day 6 by MHC class I tetramer

staining. (C) Primary ex vivo cytotoxic T cell activity of

splenocytes against NP396 was tested 6 days after infection.

Symbols represent the mean� SEM of three mice per group.

Symbol keys are provided in the table of panel A.

i.c. = intracerebral; i.v. = intravenous.
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monitor the magnitude of the antiviral cytotoxic T cell response

(Fig. 2B), and its cytolytic activity was determined in primary ex

vivo cytotoxic T cell assays (Fig. 2C). Co-infection with rLCMV/

INDG intracerebral and Armstrong intracerebral resulted in lethal

choriomeningitis analogous to Armstrong intracerebral single

infection. This excluded dominant negative immunomodulatory

effects of rLCMV/INDG on CNS immunopathogenesis. Further-

more we found that intracerebral administration of Armstrong

caused the same T cell response and disease regardless of whether

or not Armstrong was additionally administered intravenously.

Thus, we tested whether Armstrong intravenous infection could

drive a cytotoxic T cell response of optimal magnitude and cyto-

lytic capacity that would trigger CNS disease in animals simulta-

neously infected with intracerebral rLCMV/INDG. Although the

magnitude and functionality of the peripheral antiviral cytotoxic

T cell response was equivalent or even slightly higher than in

Armstrong single-infected mice, these animals failed to display

evidence of increased morbidity, both by clinical assessment and

also by testing blood brain barrier permeability analogous to the

experiments displayed in Fig. 1E (data not shown). Hence, these

results confirm that the ability of LCMV Armstrong but not

rLCMV/INDG to cause CNS disease is unrelated to differences in

the cytotoxic T cell response elicited, but rather reflect differential

viral load and/or distribution in CNS tissues.

T cells—but not antibodies—are
necessary to clear recombinant
LCMV/INDG from the CNS
Next we analysed the contribution of the adaptive cellular and

humoral immune response to silent rLCMV/INDG clearance from

the CNS. B cell-deficient JHT�/� mice exhibited unimpaired virus

clearance whereas the brains of T cell-deficient TCRb��/� mice

and RAG�/� animals (lacking T as well as B cells) harboured con-

siderable levels of persisting virus as assessed on Day 14 of infec-

tion and thereafter (Fig. 3A and data not shown). The antiviral

CD8+ T cell response to the immunodominant epitope NP396 was

measured in peripheral blood on Day 8 using MHC class I tetra-

mers (Fig. 3B). These responses were similarly vigorous in mice

with a targeted deletion of the JH locus (JHT mice) lacking B

cells, and C57BL/6 control mice, but were absent in CD8+ T

cell-deficient TCRb��/� and RAG�/� mice, as expected, and there-

fore correlated with viral clearance. Notably, rLCMV/INDG intra-

cerebral infection also elicited a vigorous and early

virus-neutralizing antibody response (Fig. 3C and D). Its absence

in JHT mice did not change the clinically silent course of rLCMV/

INDG infection (not shown), indicating that silent clearance of

rLCMV/INDG but not LCMV Armstrong was unrelated to differ-

ences in the virus-neutralizing antibody responses elicited by the

two viruses. It also suggested that antibodies were not essential

for rLCMV/INDG clearance from the CNS, but a contributory role

in this process was not excluded. TCRb��/� not only failed to

mount cytotoxic T cell responses but in addition they displayed

considerably reduced total virus-neutralizing antibody titres (IgM

plus IgG, P50.01) and a virtual absence of the

b-mercaptoethanol-resistant virus-neutralizing antibody fraction

(IgG, P50.01). This was presumably due to the lack of T cell

help for antibody production and immunoglobulin class switch,

and could also have contributed to defective viral clearance in

these animals. To address this possibility, we reconstituted

TCRb��/� animals with specific antibodies by intraperitoneal

administration of hyperimmune serum (Fig. 3E–G). While neutra-

lizing IgG in serum was restored to virtually normal levels, viral

persistence remained unaffected. In summary, these findings indi-

cate that T cells play an essential role in the silent clearance of

rLCMV/INDG from the CNS, a process that largely occurs inde-

pendently of systemic antiviral antibodies.

Clearance of LCMV/INDG from the
CNS is dependent on MHC class I
and perforin
Considering the key role of T cells in the clearance process, we

dissected the contribution of MHC class I- (MHCI-) and class II-

(MHCII-) restricted responses in rLCMV/INDG clearance from the

brain. Three of four MHC class I-deficient (MHCI�/�) mice exhib-

ited rLCMV/INDG RNA on Day 14 after infection whereas in mice

lacking MHC class II (MHCII�/�) virus was undetectable (Fig. 4A).

The differential ability to eliminate rLCMV/INDG from the CNS

correlated with the normal generation of virus-specific CD8+ T

cells in MHCII�/� mice, whereas MHCI�/� mice are devoid of a

CD8+ T cell compartment (Fig. 4B). Unlike in the experiment

depicted in Fig. 4A, a repeat experiment in MHCI�/� mice resulted

in invariable viral persistence. Altogether, rLCMV/INDG persisted

in six out of seven MHCI�/� mice tested, which was significantly

different from the uniform clearance in C57BL/6 wild-type con-

trols (P50.01). To corroborate these findings in an independent

knockout mouse model, we assessed rLCMV/INDG clearance from

the CNS of CD8�/� mice, which also lack MHCI-restricted T cells.

Virus persisted in the brains of all four CD8�/� infected mice,

further supporting a key role of MHCI-restricted T cell responses

in rLCMV/INDG clearance from the CNS (Fig. 4C and D,

P50.0001 for a combined analysis of virus clearance in C57BL/

6 versus CD8+ T cell-deficient MHCI�/� and CD8�/� mice). As a

next step we analysed the individual contribution of Fas, perforin,

interferon-� and tumour necrosis factor-� for eliminating rLCMV/

INDG (Figs 4E–H and Supplementary Fig. S2). Unimpaired virus

control in mice lacking either tumour necrosis factor receptors

1 and 2 (TNFR1/2�/�), FAS (FAS�/�), interferon-� (GKO) or inter-

feron-� receptor contrasted with clearly detectable viral persis-

tence in the brain of six out of eight perforin-deficient mice

tested in two independent experiments (Fig. 4E and H; data not

shown; P50.01 for virus clearance in perforin-deficient mice

versus C57BL/6 control mice). Impaired clearance of virus from

the CNS of perforin-deficient mice was accompanied by normal

frequencies of viral epitope-specific CD8+ T cells in peripheral

blood (P = 0.69 for NP396-specific CD8+ T cell frequencies in

perforin-deficient mice versus C57BL/6 mice; combined analysis

of Figs 4F and I), as expected (Badovinac et al., 2002). This indi-

cated that it was indeed the absence of perforin-dependent cyto-

lytic pathways rather than a general impairment of CD8+ T cell
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responses that caused viral persistence in the CNS of

perforin-deficient mice.

To gain further insights on how rLCMV/INDG persisted in the

CNS of perforin-deficient, TCRb��/� and RAG�/� mice but not in

C57BL/6 controls, we performed histological time course analyses

of viral antigen and of infiltrating CD8+ T cells. Four days after

infection the virus was restricted to ependymal cells from where it

spread into a few subependymal cells by Day 6 (Fig. 5A). These

early events were identical in T cell-competent perforin-deficient

and wild-type animals as well as in T cell-deficient TCRb��/� and

RAG�/� mice. However, C57BL/6 wild-type animals eliminated

the virus by Day 8, whereas slowly but steadily increasing numbers

of infected cells were found within the CNS parenchyma of

perforin-deficient, TCRb��/� and RAG�/� mice on Days 8, 10

Figure 3 T cells—but not antibodies—are necessary for clearance of rLCMV/INDG from the CNS. Mice of the indicated genotypes were

infected with rLCMV/INDG intracerebrally. (A) Detection of viral S-segment (S seg.) RNA in the brain by northern blot on Day 14

(ethidium bromide staining of 28S rRNA indicates loading control). (B) Frequencies of NP396-specific CD8+ T cells in blood were

determined on Day 8 using MHC class I tetramers. TCRb��/� and RAG�/� mice lack CD8+ T cells. (C and D) Virus-neutralizing total Ig (C)

and IgG (D) were determined at the indicated time points. (E–G) C57BL/6, JHT and TCRb��/� mice were infected as above. An additional

group of TCRb��/� mice was treated with 500 ml of vesicular stomatitis virus-immune serum on Day 7. (E) Viral RNA in the brain was

detected on Day 14 by northern hybridization. (F and G) Virus neutralizing total Ig and IgG titres in serum were determined over time.

Lanes in A and E and symbols in B–D represent individual mice. Symbols in F–G represent the mean� SEM of three mice per group.

Representative results from two similar experiments are shown. n.d. = not detectable; n.s. = not significant (P40.05); ** = highly

significant (P50.01).
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and 12. Comparable virus dissemination in these three knockout

strains of mice supported the notion that perforin- and

MHCI-dependent T cell control was primarily responsible for pre-

venting persistence of rLCMV/INDG in the brain parenchyma. The

failure of perforin-deficient mice to clear rLCMV/INDG was not

due to a potential delay or impairment of CD8+ T cell trafficking to

infected brain regions (Fig. 5B). In C57BL/6 mice, as in

perforin-deficient mice, infiltrating CD8+ T cells were first detected

on Day 6 in similar numbers. Unlike in wild-type controls, where

cytotoxic T cell infiltration in the meninges and periventricular

areas peaked at this time point and declined thereafter, cytotoxic

T cell infiltrates in perforin-deficient mice increased even further at

Days 8, 10 and 12, presumably as a result of persisting viral anti-

gen. In summary, these data show that MHCI-restricted

perforin-dependent mechanisms play a key role in the silent

clearance of rLCMV/INDG from the CNS.

Virus clearance from parenchyma—but
not from ependyma—depends on MHC
class I and perforin
The above analyses demonstrated similar dissemination of rLCMV/

INDG in the parenchyma of perforin-deficient, TCRb��/� and

RAG�/� mice. However, differential infection rates were noted

in the ependyma of the different mouse strains (Fig. 5, insets in

Day 12 images). Thus we studied the cell types in which rLCMV/

INDG persisted when infected mice lacked either T or B cells

Figure 4 Clearance of LCMV/INDG from the CNS is dependent on MHC class I and perforin. Mice of the indicated genotypes were

infected with rLCMV/INDG intracerebrally. (A, C, E, G and H) Viral S-segment (S seg.) RNA was detected by northern blot on Day 14 after

intracerebral infection. Ethidium bromide staining is shown as loading control. (B, D, F and I) NP396-specific CD8+ T cell frequencies in

blood were enumerated at Day 7 after infection. MHCI�/� mice and CD8�/� mice lack CD8+ T cells. Symbols and lanes represent

individual mice. In figure F and I, multiple comparisons were not performed since the F-test of ANOVA failed to detect significant

differences (P40.05). n.d. = not detectable; n.s. = not significant (P40.05).
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(RAG�/�), the entire T cell compartment (TCRb��/�),

MHCI-restricted T cells (MHCI�/�) or perforin as a key component

of cytolytic CD8+ T cell activity. Immunohistochemical co-stains

were performed 2 weeks after rLCMV/INDG infection using a

LCMV NP-specific antibody in combination with cell type-specific

markers (Fig. 6). Striking differences were noted in the ependyma

on Day 14, and were further supported by the kinetic analysis of

virus distribution depicted in Fig. 5. Unlike in the early phase of

infection when the virus was mostly confined to the brain cover-

ings (compare Figs 1D and 5), MHCI�/� and perforin-deficient

animals displayed very few infected ependymal cells (MHCI�/�

5%, perforin-deficient 2%). In contrast, ependymal cells were

the most frequently infected cell type (47%) in TCRb��/� mice

and RAG-/- mice (48%). Within the parenchyma, a similar global

picture was found in all four knockout mouse strains, with the

majority of infected cells identified as astrocytes that were predo-

minantly located in periventricular areas (67% of infected cells

positive for glial fibrillary acidic protein in MHCI�/� mice; 60%

in perforin-deficient, 31% in TCRb��/�, 29% in RAG�/� mice).

To a lesser degree, viral infection co-localized with the oligodendro-

cyte marker NogoA (MHCI�/� 14%, perforin-deficient 24%,

TCRb��/� 8%, 14% in RAG�/� mice), with the neuronal marker

Figure 5 rLCMV/INDG dissemination in the brain of perforin-deficient, TCRb��/� and RAG�/� mice, and dense CD8+ T cell infiltrates in

perforin-deficient mice. Perforin-deficient (PKO), TCRb��/�, RAG�/� and C57BL/6 wild-type control mice were infected with rLCMV/

INDG intracerebrally and were sacrificed at the indicated time points. Brain tissues were processed for immunohistochemical analysis of

LCMV NP (A) and CD8+ T cells (B). The latter analysis was only performed for perforin-deficient and C57BL/6 mice since TCRb��/- and

RAG�/� mice lack T cells. Representative images of 2–4 animals per group and timepoint are shown. Arrowheads in (A) indicate infected

(LCMV NP-positive) subependymal cells. Insets in the Day 12 timepoints of (A) show persisting infection of ependymal cells in TCRb��/�

and RAG�/� but not in perforin-deficient mice, whereas subependymal cells are infected in all three knockout strains. Scale bars

A: 100mm; B: 50 mm. d = days post intracerebral infection.
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NeuN (MHCI�/� 3%, perforin-deficient 4%, TCRb��/� 11%, 6% in

RAG�/� mice) and with the microglia/macrophage marker ionized

calcium binding adaptor-1 (MHCI�/� 11%, perforin-deficient 10%,

TCRb��/� 3%, 3% in RAG�/� mice). Infection of endothelial cells

was not detected, even when assessed in RAG�/� mice

(Supplementary Fig. S3), and endothelia were therefore not

included in the above analyses. Taken together, these findings sug-

gest that, unlike in the parenchyma where the cell type-specific

distribution of virus is similar in all four genotypes of knockout

mice tested, silent clearance from ependyma could occur in a

MHCI- and perforin-independent yet T cell-dependent fashion.

Total viral RNA loads in the brain of perforin-deficient, MHCI�/�,

TCRb��/� and RAG�/� mice are similar as determined by quantita-

tive RT-PCR (Fig. 6C), providing evidence that within the brain

parenchyma, adaptive immune pathways other than MHCI- and

perforin-dependent T cell clearance do not substantially influence

rLCMV/INDG persistence. At the same time, these RT-PCR data

suggest that viral RNA in the ependyma does not represent

a major fraction of the total viral RNA accumulating in the

CNS of TCRb��/� and RAG�/� mice. This may suggest that

ependymal cells are less permissive to viral RNA amplification than

the parenchyma.

Discussion
In contrast to viral encephalitis (i.e. infection of the brain parench-

yma), viral infections generally follow a benign course if predomi-

nantly confined to the brain coverings. The underlying reasons are

still poorly understood. In the current study we used a panel of

gene-targeted mice to study redundant and non-redundant arms

of adaptive immunity in viral clearance from CNS coverings versus

Figure 6 The cell type-specific distribution of rLCMV/INDG in the CNS is different in TCRb��/� and RAG�/� mice as compared to

perforin-deficient and MHCI�/� mice. Mice of the indicated genotypes were infected with rLCMV/INDG intracerebrally. Fourteen days

later they were sacrificed and brain tissues were processed for histological analysis of LCMV NP. (A) Ependyma was differentiated based

on morphological criteria (arrows in top panel) combined with immunohistochemical detection of LCMV NP (brown). Infection of

parenychmal cell types (bottom panels) was detected by combining LCMV NP staining (red) with cell type-specific markers (green)

in immunofluorescent co-staining as indicated. Arrowheads point out colocalization of cell type-specific markers with LCMV NP in

immunofluorescence images. Representative images from three to four animals per group are shown. Scale bar: 50 mm. (B) Histological

images were quantified to define the proportion of each cell type within the total population of infected cells. (C) Viral RNA loads in the

brain of the indicated mouse strains were measured by quantitative RT-PCR and are displayed in arbitrary units (see ‘Materials and

methods’ section). Bars represent the mean + SD of four to seven animals per group. Viral RNA loads in infected C57BL/6 mice were

significantly different from perforin-deficient (PKO), MHCI�/�, TCRb��/� and RAG�/� mice (P50.01), whereas the latter four were

not significantly different from each other (P40.05 for all comparisons). The technical background was determined in brain tissue

of uninfected mice (mean of six animals indicated as dashed line), and was not significantly different from infected C57BL/6 wild-type

mice (P40.05, not shown).
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parenchyma. The differences discovered here offer a possible

explanation for the fundamentally different clinical manifestations

of viral infection in these two CNS compartments.

Based on the present results and on earlier data, we suggest the

following scenario for viral clearance in our model of ‘aseptic men-

ingitis’. Blood-borne virus initially spreads to the CNS coverings.

Both LCMV Armstrong and rLCMV/INDG (albeit the latter to a

lesser extent) will slowly but steadily invade the brain parenchyma,

spreading from cell to cell. With the onset of the adaptive

immune response, ependymal viral replication is cleared in a

T cell-dependent manner but independently of MHCI and per-

forin, a non-cytolytic process causing only minimal clinical mani-

festations, if any. Astrocytes contribute to the formation of the

blood brain barrier and are close to the CNS coverings, rendering

them a first viral target in the parenchyma. This most likely

explains the high rate of astrocyte infection in MHCI�/�, PKO,

TCRb��/� and RAG�/� mice on Day 14 after infection (compare

Fig. 6), an assumption that is supported by the finding that neu-

ronal infection becomes more prominent with time (data not

shown). A reductionist model suggests that the ensuing cytotoxic

T cell response eliminates the infected astrocytes by

MHCI-dependent, perforin-mediated cytotoxicity. Unlike clearance

from the CNS coverings, this cytolytic process inflicts damage to

the blood brain barrier (compare Fig. 1E) and, together with other

factors such as the local inflammatory tissue response, will lead to

breakdown of the blood brain barrier. It seems likely that, depend-

ing on the number of infected astrocytes in the blood brain barrier

(i.e. virus load; high in LCMV Armstrong, low in rLCMV/INDG

infection), the resulting damage to the blood brain barrier will

vary, and thus also the extent of serum protein leakage into the

parenchyma. Once a certain level is reached, increased intracranial

pressure will lead to the classical clinical signs of meningitis

including nausea, seizures and ultimately death (Doherty and

Zinkernagel, 1974; Camenga et al., 1977; Andersen et al.,

1991). In agreement with this scenario, Christensen and col-

leagues (2004) found that delayed recruitment and accumulation

of cytotoxic T cells in the brain parenchyma caused a delay in the

onset of disease in LCMV-infected CXCL10- or CXCR3-deficient

mice, despite normal inflammatory cell recruitment to the brain

coverings (Christensen et al., 2004).

The precise molecular mechanisms as to how T cells effect

non-cytolytic clearance of the brain coverings remains to be

addressed in future work. Its occurrence independent of MHCI

suggests that MHCII-restricted T cell responses or non-classical T

cells and their respective effector molecules may be involved.

Myelomonocytic cells have recently been identified as previously

neglected players in LCMV-host interactions within the CNS, and

aside from T cells, monocyte/macrophages were also found to

accumulate in the CNS coverings during rLCMV/INDG clearance

(data not shown). Their presence could be a simple consequence

of inflammation but they may also contribute to clearance in a

direct or indirect manner. The study of their contribution to viral

clearance is complicated by considerable redundancy with other

pathways, stepping in when myelomonocytic inflammatory cells

are experimentally depleted (Kim et al., 2009). For similar reasons,

it may be difficult to delineate the precise role of T cell effector

pathways other than perforin that may contribute to clearance

of rLCMV/INDG from the CNS parenchyma (Griffin, 2003).

However, the contribution of these pathways, unlike that of per-

forin, may simply have remained undetected owing to a higher

degree of redundancy.

The model of adult intracerebral infection with rLCMV/INDG

offers several features that render it particularly amenable to the

investigation of viral clearance in aseptic meningitis. The virus’

non-cytolytic behaviour avoids complications related to viral

spread in immunocompromised animals, and as reported here,

its attenuation avoids the fatal immunopathological complications

of wild-type LCMV infection (Cole and Nathanson, 1974). On the

flip-side of the coin, cytopathic effects of viral infection may also

contribute to the clinical picture of ‘aseptic meningitis’ and are not

part of the model. Nonetheless, rLCMV/INDG infection is ideally

suited for the investigation of silent clearance, the most frequent

yet often neglected outcome of viral CNS infection.

The present data delineate a clear dichotomy in the mechanisms

underlying virus clearance from CNS coverings and parenchyma.

MHCI- and perforin-dependence of the latter, but not the former,

provides one likely explanation for the most frequently self-limiting

course of viral CNS infection.

Acknowledgements
We would like to thank C. Crozier and C. Bunker for critically

reading the manuscript.

Funding
D.D.P. holds a stipendiary professorship of the Swiss National

Science Foundation (No. PP00A-114913) and was supported by

grant No. 3100A0-104067/1 of the Swiss National Science

Foundation. A.B. is an EMBO long-term fellow and supported by

the SSMBS foundation of the Swiss National Science Foundation.

M.L. is a Lichtenberg fellow funded by the Volkswagen

Foundation. D.M. was supported by the German Research

Foundation, SFB-TR43 (Project B3), and by the Gemeinnützige
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