101 research outputs found

    Genetic Diversity of norA, Coding for a Main Efflux Pump of Staphylococcus aureus

    Get PDF
    Funding Information: This work was partially supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal), through funds to GHTM – UID/Multi/04413/2013. SC was supported by grant SFRH/BPD/97508/2013 from FCT, Portugal. TC was funded by the Medical Research Council United Kingdom (Grant Nos. MR/K000551/1, MR/M01360X/1, MR/N010469/1, and MR/R020973/1) and BBSRC United Kingdom (BB/R013063/1). BS was funded by the Medical Research Council United Kingdom (Grant No. MR/N010469/1). Publisher Copyright: © 2007 - 2019 Frontiers Media S.A. All Rights Reserved.NorA is the best studied efflux system of Staphylococcus aureus and therefore frequently used as a model for investigating efflux-mediated resistance in this pathogen. NorA activity is associated with resistance to fluoroquinolones, several antiseptics and disinfectants and several reports have pointed out the role of efflux systems, including NorA, as a first-line response to antimicrobials in S. aureus. Genetic diversity studies of the gene norA have described three alleles; norAI, norAII and norAIII. However, the epidemiology of these alleles and their impact on NorA activity remains unclear. Additionally, increasing studies do not account for norA variability when establishing relations between resistance phenotypes and norA presence or reported absence, which actually corresponds, as we now demonstrate, to different norA alleles. In the present study we assessed the variability of the norA gene present in the genome of over 1,000 S. aureus isolates, corresponding to 112 S. aureus strains with whole genome sequences publicly available; 917 MRSA strains sourced from a London-based study and nine MRSA isolates collected in a major Hospital in Lisbon, Portugal. Our analyses show that norA is part of the core genome of S. aureus. It also suggests that occurrence of norA variants reflects the population structure of this major pathogen. Overall, this work highlights the ubiquitous nature of norA in S. aureus which must be taken into account when studying the role played by this important determinant on S. aureus resistance to antimicrobials.publishersversionpublishe

    Global and Local Conformation of Human IgG Antibody Variants Rationalizes Loss of Thermodynamic Stability.

    Get PDF
    Immunoglobulin G (IgG) monoclonal antibodies (mAbs) are a major class of medicines, with high specificity and affinity towards targets spanning many disease areas. The antibody Fc (fragment crystallizable) region is a vital component of existing antibody therapeutics, as well as many next generation biologic medicines. Thermodynamic stability is a critical property for the development of stable and effective therapeutic proteins. Herein, a combination of ion-mobility mass spectrometry (IM-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) approaches have been used to inform on the global and local conformation and dynamics of engineered IgG Fc variants with reduced thermodynamic stability. The changes in conformation and dynamics have been correlated with their thermodynamic stability to better understand the destabilising effect of functional IgG Fc mutations and to inform engineering of future therapeutic proteins.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/anie.20150722

    Frequent Undetected Ward-Based Methicillin-Resistant Staphylococcus aureus Transmission Linked to Patient Sharing Between Hospitals.

    Get PDF
    Background: Recent evidence suggests that hospital transmission of methicillin-resistant Staphylococcus aureus (MRSA) is uncommon in UK centers that have implemented sustained infection control programs. We investigated whether a healthcare-network analysis could shed light on transmission paths currently sustaining MRSA levels in UK hospitals. Methods: A cross-sectional observational study was performed in 2 National Health Service hospital groups and a general district hospital in Southeast London. All MRSA patients identified at inpatient, outpatient, and community settings between 1 November 2011 and 29 February 2012 were included. We identified genetically defined MRSA transmission clusters in individual hospitals and across the healthcare network, and examined genetic differentiation of sequence type (ST) 22 MRSA isolates within and between hospitals and inpatient or outpatient and community settings, as informed by average and median pairwise single-nucleotide polymorphisms (SNPs) and SNP-based proportions of nearly identical isolates. Results: Two hundred forty-eight of 610 (40.7%) MRSA patients were linked in 90 transmission clusters, of which 27 spanned multiple hospitals. Analysis of a large 32 patient ST22-MRSA cluster showed that 26 of 32 patients (81.3%) had multiple contacts with one another during ward stays at any hospital. No residential, outpatient, or significant community healthcare contacts were identified. Genetic differentiation between ST22 MRSA inpatient isolates from different hospitals was less than between inpatient isolates from the same hospitals (P ≤ .01). Conclusions: There is evidence of frequent ward-based transmission of MRSA brought about by frequent patient admissions to multiple hospitals. Limiting in-ward transmission requires sharing of MRSA status data between hospitals

    Compassionate use of cefiderocol as adjunctive treatment of native aortic valve endocarditis due to XDR-Pseudomonas aeruginosa

    Get PDF
    Serious infections such as endocarditis due to extremely drug-resistance gram-negative bacteria are an increasing challenge. Here, we present successful adjunctive use of cefiderocol for a patient with persistently bacteremic healthcare-associated native aortic valve endocarditis due to an extended-spectrum beta-lactamase-positive Pseudomonas aeruginosa susceptible in vitro only to colistin, following failure of conventional therapeutic options

    Genetic Diversity of norA, Coding for a Main Efflux Pump of Staphylococcus aureus

    Get PDF
    NorA is the best studied efflux system of Staphylococcus aureus and therefore frequently used as a model for investigating efflux-mediated resistance in this pathogen. NorA activity is associated with resistance to fluoroquinolones, several antiseptics and disinfectants and several reports have pointed out the role of efflux systems, including NorA, as a first-line response to antimicrobials in S. aureus. Genetic diversity studies of the gene norA have described three alleles; norAI, norAII and norAIII. However, the epidemiology of these alleles and their impact on NorA activity remains unclear. Additionally, increasing studies do not account for norA variability when establishing relations between resistance phenotypes and norA presence or reported absence, which actually corresponds, as we now demonstrate, to different norA alleles. In the present study we assessed the variability of the norA gene present in the genome of over 1,000 S. aureus isolates, corresponding to 112 S. aureus strains with whole genome sequences publicly available; 917 MRSA strains sourced from a London-based study and nine MRSA isolates collected in a major Hospital in Lisbon, Portugal. Our analyses show that norA is part of the core genome of S. aureus. It also suggests that occurrence of norA variants reflects the population structure of this major pathogen. Overall, this work highlights the ubiquitous nature of norA in S. aureus which must be taken into account when studying the role played by this important determinant on S. aureus resistance to antimicrobials

    Oxidation resistance of graphene-coated Cu and Cu/Ni alloy

    Full text link
    The ability to protect refined metals from reactive environments is vital to many industrial and academic applications. Current solutions, however, typically introduce several negative effects, including increased thickness and changes in the metal physical properties. In this paper, we demonstrate for the first time the ability of graphene films grown by chemical vapor deposition to protect the surface of the metallic growth substrates of Cu and Cu/Ni alloy from air oxidation. SEM, Raman spectroscopy, and XPS studies show that the metal surface is well protected from oxidation even after heating at 200 \degree C in air for up to 4 hours. Our work further shows that graphene provides effective resistance against hydrogen peroxide. This protection method offers significant advantages and can be used on any metal that catalyzes graphene growth

    Association of cardiometabolic microRNAs with COVID-19 severity and mortality

    Get PDF
    AIMS: Coronavirus disease 2019 (COVID-19) can lead to multiorgan damage. MicroRNAs (miRNAs) in blood reflect cell activation and tissue injury. We aimed to determine the association of circulating miRNAs with COVID-19 severity and 28 day intensive care unit (ICU) mortality. METHODS AND RESULTS: We performed RNA-Seq in plasma of healthy controls (n = 11), non-severe (n = 18), and severe (n = 18) COVID-19 patients and selected 14 miRNAs according to cell- and tissue origin for measurement by reverse transcription quantitative polymerase chain reaction (RT–qPCR) in a separate cohort of mild (n = 6), moderate (n = 39), and severe (n = 16) patients. Candidates were then measured by RT–qPCR in longitudinal samples of ICU COVID-19 patients (n = 240 samples from n = 65 patients). A total of 60 miRNAs, including platelet-, endothelial-, hepatocyte-, and cardiomyocyte-derived miRNAs, were differentially expressed depending on severity, with increased miR-133a and reduced miR-122 also being associated with 28 day mortality. We leveraged mass spectrometry-based proteomics data for corresponding protein trajectories. Myocyte-derived (myomiR) miR-133a was inversely associated with neutrophil counts and positively with proteins related to neutrophil degranulation, such as myeloperoxidase. In contrast, levels of hepatocyte-derived miR-122 correlated to liver parameters and to liver-derived positive (inverse association) and negative acute phase proteins (positive association). Finally, we compared miRNAs to established markers of COVID-19 severity and outcome, i.e. SARS-CoV-2 RNAemia, age, BMI, D-dimer, and troponin. Whilst RNAemia, age and troponin were better predictors of mortality, miR-133a and miR-122 showed superior classification performance for severity. In binary and triplet combinations, miRNAs improved classification performance of established markers for severity and mortality. CONCLUSION: Circulating miRNAs of different tissue origin, including several known cardiometabolic biomarkers, rise with COVID-19 severity. MyomiR miR-133a and liver-derived miR-122 also relate to 28 day mortality. MiR-133a reflects inflammation-induced myocyte damage, whilst miR-122 reflects the hepatic acute phase response

    Quantifying Type-Specific Reproduction Numbers for Nosocomial Pathogens: Evidence for Heightened Transmission of an Asian Sequence Type 239 MRSA Clone

    Get PDF
    An important determinant of a pathogen's success is the rate at which it is transmitted from infected to susceptible hosts. Although there are anecdotal reports that methicillin-resistant Staphylococcus aureus (MRSA) clones vary in their transmissibility in hospital settings, attempts to quantify such variation are lacking for common subtypes, as are methods for addressing this question using routinely-collected MRSA screening data in endemic settings. Here we present a method to quantify the time-varying transmissibility of different subtypes of common bacterial nosocomial pathogens using routine surveillance data. The method adapts approaches for estimating reproduction numbers based on the probabilistic reconstruction of epidemic trees, but uses relative hazards rather than serial intervals to assign probabilities to different sources for observed transmission events. The method is applied to data collected as part of a retrospective observational study of a concurrent MRSA outbreak in the United Kingdom with dominant endemic MRSA clones (ST22 and ST36) and an Asian ST239 MRSA strain (ST239-TW) in two linked adult intensive care units, and compared with an approach based on a fully parametric transmission model. The results provide support for the hypothesis that the clones responded differently to an infection control measure based on the use of topical antiseptics, which was more effective at reducing transmission of endemic clones. They also suggest that in one of the two ICUs patients colonized or infected with the ST239-TW MRSA clone had consistently higher risks of transmitting MRSA to patients free of MRSA. These findings represent some of the first quantitative evidence of enhanced transmissibility of a pandemic MRSA lineage, and highlight the potential value of tailoring hospital infection control measures to specific pathogen subtypes

    Population-level faecal metagenomic profiling as a tool to predict antimicrobial resistance in Enterobacterales isolates causing invasive infections: an exploratory study across Cambodia, Kenya, and the UK

    Get PDF
    Background: Antimicrobial resistance (AMR) in Enterobacterales is a global health threat. Capacity for individual-level surveillance remains limited in many countries, whilst population-level surveillance approaches could inform empiric antibiotic treatment guidelines. Methods: In this exploratory study, a novel approach to population-level prediction of AMR in Enterobacterales clinical isolates using metagenomic (Illumina) profiling of pooled DNA extracts from human faecal samples was developed and tested. Taxonomic and AMR gene profiles were used to derive taxonomy-adjusted population-level AMR metrics. Bayesian modelling, and model comparison based on cross-validation, were used to evaluate the capacity of each metric to predict the number of resistant Enterobacterales invasive infections at a population-level, using available bloodstream/cerebrospinal fluid infection data. Findings: Population metagenomes comprised samples from 177, 157, and 156 individuals in Kenya, the UK, and Cambodia, respectively, collected between September 2014 and April 2016. Clinical data from independent populations included 910, 3356 and 197 bacterial isolates from blood/cerebrospinal fluid infections in Kenya, the UK and Cambodia, respectively (samples collected between January 2010 and May 2017). Enterobacterales were common colonisers and pathogens, and faecal taxonomic/AMR gene distributions and proportions of antimicrobial-resistant Enterobacterales infections differed by setting. A model including terms reflecting the metagenomic abundance of the commonest clinical Enterobacterales species, and of AMR genes known to either increase the minimum inhibitory concentration (MIC) or confer clinically-relevant resistance, had a higher predictive performance in determining population-level resistance in clinical Enterobacterales isolates compared to models considering only AMR gene information, only taxonomic information, or an intercept-only baseline model (difference in expected log predictive density compared to best model, estimated using leave-one-out cross-validation: intercept-only model = -223 [95% credible interval (CI): -330,-116]; model considering only AMR gene information = -186 [95% CI: -281,-91]; model considering only taxonomic information = -151 [95% CI: -232,-69]). Interpretation: Whilst our findings are exploratory and require validation, intermittent metagenomics of pooled samples could represent an effective approach for AMR surveillance and to predict population-level AMR in clinical isolates, complementary to ongoing development of laboratory infrastructures processing individual samples
    corecore