255 research outputs found

    Three-dimensional brain reconstruction of in vivo electrode tracks for neuroscience and neural prosthetic applications

    Get PDF
    The brain is a densely interconnected network that relies on populations of neurons within and across multiple nuclei to code for features leading to perception and action. However, the neurophysiology field is still dominated by the characterization of individual neurons, rather than simultaneous recordings across multiple regions, without consistent spatial reconstruction of their locations for comparisons across studies. There are sophisticated histological and imaging techniques for performing brain reconstructions. However, what is needed is a method that is relatively easy and inexpensive to implement in a typical neurophysiology lab and provides consistent identification of electrode locations to make it widely used for pooling data across studies and research groups. This paper presents our initial development of such an approach for reconstructing electrode tracks and site locations within the guinea pig inferior colliculus (IC) to identify its functional organization for frequency coding relevant for a new auditory midbrain implant (AMI). Encouragingly, the spatial error associated with different individuals reconstructing electrode tracks for the same midbrain was less than 65 ÎŒm, corresponding to an error of ~1.5% relative to the entire IC structure (~4–5 mm diameter sphere). Furthermore, the reconstructed frequency laminae of the IC were consistently aligned across three sampled midbrains, demonstrating the ability to use our method to combine location data across animals. Hopefully, through further improvements in our reconstruction method, it can be used as a standard protocol across neurophysiology labs to characterize neural data not only within the IC but also within other brain regions to help bridge the gap between cellular activity and network function. Clinically, correlating function with location within and across multiple brain regions can guide optimal placement of electrodes for the growing field of neural prosthetics

    ROSAT PSPC Observations of the Richest (R≄2R \geq 2) ACO Clusters

    Full text link
    We have compiled an X-ray catalog of optically selected rich clusters of galaxies observed by the PSPC during the pointed GO phase of the ROSAT mission. This paper contains a systematic X-ray analysis of 150 clusters with an optical richness classification of R≄2R \geq 2 from the ACO catalog (Abell, Corwin, and Olowin 1989). All clusters were observed within 45' of the optical axis of the telescope during pointed PSPC observations. For each cluster, we calculate: the net 0.5-2.0 keV PSPC count rate (or 4σ4 \sigma upper limit) in a 1 Mpc radius aperture, 0.5-2.0 keV flux and luminosity, bolometric luminosity, and X-ray centroid. The cluster sample is then used to examine correlations between the X-ray and optical properties of clusters, derive the X-ray luminosity function of clusters with different optical classifications, and obtain a quantitative estimate of contamination (i.e, the fraction of clusters with an optical richness significantly overestimated due to interloping galaxies) in the ACO catalog

    An ASCA Study of the Heavy Element Distribution in Clusters of Galaxies

    Full text link
    We perform a spatially resolved X-ray spectroscopic study of a set of 11 relaxed clusters of galaxies observed by the ROSAT/PSPC and ASCA/SIS. Using a method which corrects for the energy dependent effects of the ASCA PSF based on ROSAT images, we constrain the spatial distribution of Ne, Si, S and Fe in each cluster. Theoretical prescriptions for the chemical yields of Type Ia and II supernovae, then allow determination of the Fe enrichment from both types of supernovae as a function of radius within each cluster. Using optical measurements from the literature, we also determine the iron mass-to-light ratio (IMLR) separately for Fe synthesized in both types of supernovae. For clusters with the best photon statistics, we find that the total Fe abundance decreases significantly with radius, while the Si abundance is either flat or decreases less rapidly, resulting in an increasing Si/Fe ratio with radius. This result indicates a greater predominance of Type II SNe enrichment at large radii in clusters. We suggest that the high Si/Fe ratios in the outskirts of rich clusters may arise from enrichment by Type II SNe released to ICM via galactic star burst driven winds. Abridged.Comment: 17 pages, ApJ in press (Nov. 2000), a study of systematics is adde

    Restoration of pharyngeal dilator muscle force in dystrophin-deficient (mdx) mice following co-treatment with neutralizing interleukin-6 receptor antibodies and urocortin-2

    Get PDF
    New Findings: What is the central question of this study? We previously reported impaired upper airway dilator muscle function in the mdx mouse model of Duchenne muscular dystrophy (DMD). Our aim was to assess the effect of blocking interleukin-6 receptor signalling and stimulating corticotrophin-releasing factor receptor 2 signalling on mdx sternohyoid muscle structure and function. What is the main finding and its importance? The interventional treatment had a positive inotropic effect on sternohyoid muscle force, restoring mechanical work and power to wild-type values, reduced myofibre central nucleation and preserved the myosin heavy chain type IIb fibre complement of mdx sternohyoid muscle. These data might have implications for development of pharmacotherapies for DMD with relevance to respiratory muscle performance. The mdx mouse model of Duchenne muscular dystrophy shows evidence of impaired pharyngeal dilator muscle function. We hypothesized that inflammatory and stress-related factors are implicated in airway dilator muscle dysfunction. Six-week-old mdx (n = 26) and wild-type (WT; n = 26) mice received either saline (0.9% w/v) or a co-administration of neutralizing interleukin-6 receptor antibodies (0.2 mg kg−1) and corticotrophin-releasing factor receptor 2 agonist (urocortin 2; 30 ÎŒg kg−1) over 2 weeks. Sternohyoid muscle isometric and isotonic contractile function was examined ex vivo. Muscle fibre centronucleation and muscle cellular infiltration, collagen content, fibre-type distribution and fibre cross-sectional area were determined by histology and immunofluorescence. Muscle chemokine content was examined by use of a multiplex assay. Sternohyoid peak specific force at 100 Hz was significantly reduced in mdx compared with WT. Drug treatment completely restored force in mdx sternohyoid to WT levels. The percentage of centrally nucleated muscle fibres was significantly increased in mdx, and this was partly ameliorated after drug treatment. The areal density of infiltrates and collagen content were significantly increased in mdx sternohyoid; both indices were unaffected by drug treatment. The abundance of myosin heavy chain type IIb fibres was significantly decreased in mdx sternohyoid; drug treatment preserved myosin heavy chain type IIb complement in mdx muscle. The chemokines macrophage inflammatory protein 2, interferon-Îł-induced protein 10 and macrophage inflammatory protein 3α were significantly increased in mdx sternohyoid compared with WT. Drug treatment significantly increased chemokine expression in mdx but not WT sternohyoid. Recovery of contractile function was impressive in our study, with implications for Duchenne muscular dystrophy. The precise molecular mechanisms by which the drug treatment exerts an inotropic effect on mdx sternohyoid muscle remain to be elucidated

    Systematic study of X-ray Cavities in the brightest galaxy of the Draco Constellation NGC 6338

    Full text link
    We present results based on the systematic analysis of currently available Chandra archive data on the brightest galaxy in the Draco constellation NGC 6338, in order to investigate the properties of the X-ray cavities. In the central ~6 kpc, at least a two and possibly three, X-ray cavities are evident. All these cavities are roughly of ellipsoidal shapes and show a decrement in the surface brightness of several tens of percent. In addition to these cavities, a set of X-ray bright filaments are also noticed which are spatially coincident with the H{\alpha} filaments over an extent of 15 kpc. The H{\alpha} emission line filaments are perpendicular to the X- ray cavities. Spectroscopic analysis of the hot gas in the filaments and cavities reveal that the X-ray filaments are cooler than the gas contained in the cavities. The emission line ratios and the extended, asymmetric nature of the H{\alpha} emission line filaments seen in this system require a harder ionizing source than that produced by star formation and/or young, massive stars. Radio emission maps derived from the analysis of 1.4 GHz VLA FIRST survey data failed to show any association of these X-ray cavities with radio jets, however, the cavities are filled by radio emission. The total power of the cavities is 17\times 1042 erg s-1 and the ratio of the radio luminosity to cavity power is ~ 10-4, implying that most of the jet power is mechanical.Comment: The paper contains 12 figures and 3 tables, Accepted 2011 December 7 for publication in MNRA

    Introducing BAX: a database for X-ray clusters and groups of galaxies

    Full text link
    We present BAX, Base de Donnees Amas de Galaxies X (http://webast.ast.obs-mip.fr/bax), a multi-wavelength database dedicated to X-ray clusters and groups of galaxies allowing detailed information retrieval. BAX is designed to support astronomical research by providing access to published measurements of the main physical quantities and to the related bibliographic references: basic data stored in the database are cluster/group identifiers, equatorial coordinates, redshift, flux, X-ray luminosity (in the ROSAT band) and temperature, and links to additional linked parameters (in X-rays, such as spatial profile parameters, as well as SZ parameters of the hot gas, lensing measurements,and data at other wavelengths, such as optical and radio). The clusters and groups in BAX can be queried by the basic parameters as well as the linked parameters or combinations of these. We expect BAX to become an important tool for the astronomical community. BAX will optimize various aspects of the scientific analysis of X-ray clusters and groups of galaxies, from proposal planning to data collection, interpretation and publication, from both ground based facilities like MEGACAM (CFHT), VIRMOS (VLT) and space missions like XMM-Newton, Chandra and Planck.Comment: Accepted for publication in Astronomy and Astrophysics Journal. Contains 4 pages and 1 figur

    Si-compatible candidates for high-K dielectrics with the Pbnm perovskite structure

    Full text link
    We analyze both experimentally (where possible) and theoretically from first-principles the dielectric tensor components and crystal structure of five classes of Pbnm perovskites. All of these materials are believed to be stable on silicon and are therefore promising candidates for high-K dielectrics. We also analyze the structure of these materials with various simple models, decompose the lattice contribution to the dielectric tensor into force constant matrix eigenmode contributions, explore a peculiar correlation between structural and dielectric anisotropies in these compounds and give phonon frequencies and infrared activities of those modes that are infrared-active. We find that CaZrO_3, SrZrO_3, LaHoO_3, and LaYO_3 are among the most promising candidates for high-K dielectrics among the compounds we considered.Comment: 17 pages, 9 figures, 4 tables. Supplementary information: http://link.aps.org/supplemental/10.1103/PhysRevB.82.064101 or http://www.physics.rutgers.edu/~sinisa/highk/supp.pd

    The Effects of Gas Dynamics, Cooling, Star Formation, and Numerical Resolution in Simulations of Cluster Formation

    Get PDF
    We present the analysis of a suite of simulations of a Virgo mass galaxy cluster. Undertaken within the framework of standard cold dark matter cosmology, these simulations were performed at differing resolutions and with increasingly complex physical processes, with the goal of identifying the effects of each on the evolution of the cluster. We focus on the cluster at the present epoch and examine properties including the radial distributions of density, temperature, entropy and velocity. We also map `observable' projected properties such as the surface mass density, X-ray surface brightness and SZ signature. We identify significant differences between the simulations, which highlights the need for caution when comparing numerical simulations to observations of galaxy clusters. While resolution affects the inner density profile in dark matter simulations, the addition of a gaseous component, especially one that cools and forms stars, affects the entire cluster. We conclude that both resolution and included physical processes play an important role in simulating the formation and evolution of galaxy clusters. Therefore, physical inferences drawn from simulations that do not include a gaseous component that can cool and form stars present a poor representation of reality. (Abridged)Comment: Accepted for publication in the Astrophysical Journal. Several changes from previous version, including new materia

    A deep Chandra observation of the poor cluster AWM4 - II. The role of the radio jets in enriching the intra-cluster medium

    Full text link
    We use a Chandra observation of the poor cluster AWM4 to map the temperature and abundance of the intra-cluster medium, so as to examine the influence of the central radio galaxy on its environment. While the cluster core is generally enriched to near-solar abundances, we find evidence of super-solar abundances correlated with the radio jets, extending ~35 kpc from the core of the central dominant galaxy NGC 6051 along its minor axis. We conclude that the enriched gas has been transported out of the central galaxy through the action of the radio source. We estimate the excess mass of iron in the entrained gas to be ~1.4x10^6 Msol, and find that this can be produced in the core of NGC 6051 within the timescale of the AGN outburst. The energy required to transport this gas to its current location is ~4.5x10^57 erg, a significant fraction of the estimated total mechanical energy output of the AGN, though this estimate is dependent on the degree of enrichment of the uplifted gas. The larger near-solar abundance region is also compatible with enrichment by metals mixed outward from NGC 6051 over a much longer timescale.Comment: Accepted for publication in MNRAS, 11 pages, 6 figure
    • 

    corecore