97 research outputs found

    Analysis of ASTEC-Na capabilities for simulating a loss of flow CABRI experiment

    Get PDF
    Abstract This paper presents simulation results of the CABRI BI1 test using the code ASTEC-Na, currently under development, as well as a comparison of the results with available experimental data. The EU-JASMIN project (7th FP of EURATOM) centres on the development and validation of the new severe accident analysis code ASTEC-Na (Accident Source Term Evaluation Code) for sodium-cooled fast reactors whose owner and developer is IRSN. A series of experiments performed in the past (CABRI/SCARABEE experiments) and new experiments to be conducted in the new experimental sodium facility KASOLA have been chosen to validate the developed ASTEC-Na code. One of the in-pile experiments considered for the validation of ASTEC-Na thermal–hydraulic models is the CABRI BI1 test, a pure loss-of-flow transient using a low burnup MOX fuel pin. The experiment resulted in a channel voiding as a result of the flow coast-down leading to clad melting. Only some fuel melting took place. Results from the analysis of this test using SIMMER and SAS-SFR codes are also presented in this work to check their suitability for further code benchmarking purposes

    Third Yearly Activity Report

    Get PDF
    The calculation work performed during the 3rd project year in WP2 as well as the R&D activities carried out in WP3, WP4 and WP5 are described in this report. In addition, the work dedicated to the project management (WP1) as well as to WP6 regarding the dissemination/communication activities and the education/training program (e.g. the follow-up of the mobility program between different organizations in the consortium, training on simulation tools and activities accomplished by PhD/post-doctoral students) is also reported

    Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission

    Get PDF
    After fruit ripening, many fruit-tree species undergo massive natural fruit abscission. Olive (Olea europaea L.) is a stone-fruit with cultivars such as Picual (PIC) and Arbequina (ARB) which differ in mature fruit abscission potential. Ethylene (ET) is associated with abscission, but its role during mature fruit abscission remains largely uncharacterized. The present study investigates the possible roles of ET and polyamine (PA) during mature fruit abscission by modulating genes involved in the ET signalling and biosynthesis pathways in the abscission zone (AZ) of both cultivars. Five ET-related genes (OeACS2, OeACO2, OeCTR1, OeERS1, and OeEIL2) were isolated in the AZ and adjacent cells (AZ–AC), and their expression in various olive organs and during mature fruit abscission, in relation to interactions between ET and PA and the expression induction of these genes, was determined. OeACS2, OeACO2, and OeEIL2 were found to be the only genes that were up-regulated in association with mature fruit abscission. Using the inhibition of ET and PA biosynthesis, it is demonstrated that OeACS2 and OeEIL2 expression are under the negative control of PA while ET induces their expression in AZ–AC. Furthermore, mature fruit abscission depressed nitric oxide (NO) production present mainly in the epidermal cells and xylem of the AZ. Also, NO production was differentially responsive to ET, PA, and different inhibitors. Taken together, the results indicate that PA-dependent ET signalling and biosynthesis pathways participate, at least partially, during mature fruit abscission, and that endogenous NO and 1-aminocyclopropane-1-carboxylic acid maintain an inverse correlation, suggesting an antagonistic action of NO and ET in abscission signalling

    Sugli astrocitomi diffusi

    No full text
    corecore