81 research outputs found

    Identification of cofragmented combinatorial peptide isomers by two-dimensional partial covariance mass spectrometry

    Get PDF
    Combinatorial post-translational modifications (PTMs), such as those forming the so-called “histone code”, have been linked to cell differentiation, embryonic development, cellular reprogramming, aging, cancers, neurodegenerative disorders, etc. Nevertheless, a reliable mass spectral analysis of the combinatorial isomers represents a considerable challenge. The difficulty stems from the incompleteness of information that could be generated by the standard MS to differentiate cofragmented isomeric sequences in their naturally occurring mixtures based on the fragment mass-to-charge ratio and relative abundance information only. Here we show that fragment–fragment correlations revealed by two-dimensional partial covariance mass spectrometry (2D-PC-MS) allow one to solve the combinatorial PTM puzzles that cannot be tackled by the standard MS as a matter of principle. We introduce 2D-PC-MS marker ion correlation approach and demonstrate experimentally that it can provide the missing information enabling identification of cofragmentated combinatorially modified isomers. Our in silico study shows that the marker ion correlations can be used to unambiguously identify 5 times more cofragmented combinatorially acetylated tryptic peptides and 3 times more combinatorially modified Glu-C peptides of human histones than is possible using standard MS methods

    Two-Dimensional Partial-Covariance Mass Spectrometry of Large Molecules Based on Fragment Correlations

    Get PDF
    Covariance mapping [L. J. Frasinski, K. Codling, and P. A. Hatherly, Science 246, 1029 (1989)] is a well-established technique used for the study of mechanisms of laser-induced molecular ionization and decomposition. It measures statistical correlations between fluctuating signals of pairs of detected species (ions, fragments, electrons). A positive correlation identifies pairs of products originating from the same dissociation or ionization event. A major challenge for covariance-mapping spectroscopy is accessing decompositions of large polyatomic molecules, where true physical correlations are overwhelmed by spurious signals of no physical significance induced by fluctuations in experimental parameters. As a result, successful applications of covariance mapping have so far been restricted to low-mass systems, e.g., organic molecules of around 50 daltons (Da). Partial-covariance mapping was suggested to tackle the problem of spurious correlations by taking into account the independently measured fluctuations in the experimental conditions. However, its potential has never been realized for the decomposition of large molecules, because in these complex situations, determining and continuously monitoring multiple experimental parameters affecting all the measured signals simultaneously becomes unfeasible. We introduce, through deriving theoretically and confirming experimentally, a conceptually new type of partial-covariance mapping—self-correcting partial-covariance spectroscopy—based on a parameter extracted from the measured spectrum itself. We use the readily available total ion count as the self-correcting partial-covariance parameter, thus eliminating the challenge of determining experimental parameter fluctuations in covariance measurements of large complex systems. The introduced self-correcting partial covariance enables us to successfully resolve correlations of molecules as large as 10 3 – 10 4     Da , 2 orders of magnitude above the state of the art. This opens new opportunities for mechanistic studies of large molecule decompositions through revealing their fragment-fragment correlations. Moreover, we demonstrate that self-correcting partial covariance is applicable to solving the inverse problem: reconstruction of a molecular structure from its fragment spectrum, within two-dimensional partial-covariance mass spectrometry

    Application of the broadband collision-induced dissociation (bbCID) mass spectrometry approach for protein glycosylation and phosphorylation analysis

    Get PDF
    Rationale Analysis of post‐translationally modified peptides by mass spectrometry (MS) remains incomplete, in part due to incomplete sampling of all peptides which is inherent to traditional data‐dependent acquisition (DDA). An alternative MS approach, data‐independent acquisition (DIA), enables comprehensive recording of all detectable precursor and product ions, independent of precursor intensity. The use of broadband collision‐induced dissociation (bbCID), a DIA method, was evaluated for the identification of protein glycosylation and phosphorylation. Methods bbCID was applied to identify glycopeptides and phosphopeptides generated from standard proteins using a high‐resolution Bruker maXis 3G mass spectrometer. In bbCID, precursor and product ion spectra were obtained by alternating low and high collision energy. Precursor ions were assigned manually based on the detection of diagnostic ions specific to either glycosylation or phosphorylation. The composition of the glycan modification was resolved in the positive ion mode, while the level of phosphorylation was investigated in the negative ion mode. Results The results demonstrate for the first time that the use of a bbCID approach is suitable for the identification of glycopeptides and phosphopeptides based on the detection of specific diagnostic and associated precursor ions. The novel use of bbCID in negative ion mode allowed the discrimination of singly and multiply phosphorylated peptides based on the detection of phosphate diagnostic ions. The results also demonstrate the ability of this approach to allow the identification of glycan composition in N‐ and O‐linked glycopeptides, in positive ion mode. Conclusions We contend that bbCID is a valuable addition to the existing toolkit for PTM discovery. Moreover, this technique could be employed to direct targeted proteomics methods, particularly where there is no a priori information on glycosylation or phosphorylation status. This technique is immediately relevant to the characterisation of individual proteins or biological samples of low complexity, as demonstrated for the analysis of the glycosylation status of a therapeutic protein

    Targeted online liquid chromatography electron capture dissociation mass spectrometry for the localization of sites of in vivo phosphorylation in human Sprouty2

    Get PDF
    We demonstrate a strategy employing collision-induced dissociation for phosphopeptide discovery, followed by targeted electron capture dissociation (ECD) for site localization. The high mass accuracy and low background noise of the ECD mass spectra allow facile sequencing of coeluting isobaric phosphopeptides, with up to two isobaric phosphopeptides sequenced from a single mass spectrum. In contrast to the previously described neutral loss of dependent ECD method, targeted ECD allows analysis of both phosphotyrosine peptides and lower abundance phosphopeptides. The approach was applied to phosphorylation analysis of human Sprouty2, a regulator of receptor tyrosine kinase signaling. Fifteen sites of phosphorylation were identified, 11 of which are novel

    Chimera spectrum diagnostics for peptides using two-dimensional partial covariance mass spectrometry

    Get PDF
    The rate of successful identification of peptide sequences by tandem mass spectrometry (MS/MS) is adversely affected by the common occurrence of co-isolation and co-fragmentation of two or more isobaric or isomeric parent ions. This results in so-called `chimera spectra’, which feature peaks of the fragment ions from more than a single precursor ion. The totality of the fragment ion peaks in chimera spectra cannot be assigned to a single peptide sequence, which contradicts a fundamental assumption of the standard automated MS/MS spectra analysis tools, such as protein database search engines. This calls for a diagnostic method able to identify chimera spectra to single out the cases where this assumption is not valid. Here, we demonstrate that, within the recently developed two-dimensional partial covariance mass spectrometry (2D-PC-MS), it is possible to reliably identify chimera spectra directly from the two-dimensional fragment ion spectrum, irrespective of whether the co-isolated peptide ions are isobaric up to a finite mass accuracy or isomeric. We introduce ‘3-57 chimera tag’ technique for chimera spectrum diagnostics based on 2D-PC-MS and perform numerical simulations to examine its efficiency. We experimentally demonstrate the detection of a mixture of two isomeric parent ions, even under conditions when one isomeric peptide is at one five-hundredth of the molar concentration of the second isomer
    • 

    corecore