186 research outputs found

    CAPABILITY OF SEA CUCUMBER Holothuria scabra TO REMOVE NITROGEN AND PHOSPHOR WASTE FROM SHRIMP PONDS CULTURE

    Get PDF
    Solid organic waste (PSW) in shrimp ponds contains relatively high levels of nitrogen and phosphorus and can endanger the ecological balance of the waters. This study evaluates the ability of sea cucumber Holothuria scabra to remove nitrogen and phosphorus loads from shrimp pond sediment waste in water and sediment. Sea cucumbers were reared for 40 days with a density of 20 individuals/m2 (average body weight 2.65±0.09 g) and a double-bottom recirculation system. Five levels of PSW accumulation were inserted into the aquarium substrate and were the sole source of nutrition for sea cucumbers without additional feeding: 10%, 20%, 30%, 40%, and 50% (with three replications). The results showed that increasing the PSW content in the aquarium research substrate significantly increased the substrate's TOC, TN, and TP content and increased the concentrations of TOM, DOC, NH3, NO2, and PO4 in the water column. The activity of sea cucumbers in utilizing PSW nutrients in all treatments up to a PSW level of 50% significantly reduced TOC, TN, and TP in sediments. This activity also substantially removes the concentration of TOM, DOC, NH3, NO2, and PO4 in the water. It is estimated that every kilogram of H. scabra can remove up to 12.65-12.73 g of nitrogen/day and 2.57-2.60 g of phosphorus/day contained in the solid organic waste of shrimp ponds. Therefore, this study concluded that H. scabra has great potential to be used as integrated multi-trophic aquaculture (IMTA) species, especially to remove nitrogen and phosphorus loads from shrimp pond sediment waste in waters

    Characterisation of feline renal cortical fibroblast cultures and their transcriptional response to transforming growth factor beta 1

    Get PDF
    Chronic kidney disease (CKD) is common in geriatric cats, and the most prevalent pathology is chronic tubulointerstitial inflammation and fibrosis. The cell type predominantly responsible for the production of extra-cellular matrix in renal fibrosis is the myofibroblast, and fibroblast to myofibroblast differentiation is probably a crucial event. The cytokine TGF-β1 is reportedly the most important regulator of myofibroblastic differentiation in other species. The aim of this study was to isolate and characterise renal fibroblasts from cadaverous kidney tissue of cats with and without CKD, and to investigate the transcriptional response to TGF-β1

    Step-wise evolution of complex chemical defenses in millipedes: a phylogenomic approach

    Get PDF
    With fossil representatives from the Silurian capable of respiring atmospheric oxygen, millipedes are among the oldest terrestrial animals, and likely the first to acquire diverse and complex chemical defenses against predators. Exploring the origin of complex adaptive traits is critical for understanding the evolution of Earth’s biological complexity, and chemical defense evolution serves as an ideal study system. The classic explanation for the evolution of complexity is by gradual increase from simple to complex, passing through intermediate “stepping stone� states. Here we present the first phylogenetic-based study of the evolution of complex chemical defenses in millipedes by generating the largest genomic-based phylogenetic dataset ever assembled for the group. Our phylogenomic results demonstrate that chemical complexity shows a clear pattern of escalation through time. New pathways are added in a stepwise pattern, leading to greater chemical complexity, independently in a number of derived lineages. This complexity gradually increased through time, leading to the advent of three distantly related chemically complex evolutionary lineages, each uniquely characteristic of each of the respective millipede groups

    Intraocular pressure and ocular pulse amplitude using dynamic contour tonometry and contact lens tonometry

    Get PDF
    BACKGROUND: The new Ocular Dynamic Contour Tonometer (DCT), investigational device supplied by SMT (Swiss Microtechnology AG, Switzerland) allows simultaneous recording of intraocular pressure (IOP) and ocular pulse amplitude (OPA). It was the aim of this study to compare the IOP results of this new device with Goldmann tonometry. Furthermore, IOP and OPA measured with the new slitlamp-mounted DCT were compared to the IOP and OPA measured with the hand-held SmartLens(®), a gonioscopic contact lens tonometer (ODC Ophthalmic Development Company AG, Switzerland). METHODS: Nineteen healthy subjects were included in this study. IOP was determined by three consecutive measurements with each of the DCT, SmartLens(®), and Goldmann tonometer. Furthermore, OPA was measured three times consecutively by DCT and SmartLens(®). RESULTS: No difference (P = 0.09) was found between the IOP values by means of DCT (mean: 16.6 mm Hg, median: 15.33 mm Hg, SD: +/- 4.04 mm Hg) and Goldmann tonometry (mean: 16.17 mm Hg, median: 15.33 mm Hg, SD: +/- 4.03 mm Hg). The IOP values of SmartLens(® )(mean: 20.25 mm Hg, median: 19.00 mm Hg, SD: +/- 4.96 mm Hg) were significantly higher (P = 0.0008) both from Goldmann tonometry and DCT. The OPA values of the DCT (mean: 3.08 mm Hg, SD: +/- 0.92 mm Hg) were significantly lower (P = 0.0003) than those obtained by SmartLens(® )(mean: 3.92 mm Hg, SD: +/- 0.83 mm Hg). CONCLUSIONS: DCT was equivalent to Goldmann applanation tonometry in measurement of IOP in a small group of normal subjects. In contrast, SmartLens(® )(contact lens tonometry) gave IOP readings that were significantly higher compared with Goldmann applanation tonometer readings. Both devices, DCT and SmartLens(® )provide the measurement of OPA which could be helpful e.g. for the management of glaucoma

    A Score of the Ability of a Three-Dimensional Protein Model to Retrieve Its Own Sequence as a Quantitative Measure of Its Quality and Appropriateness

    Get PDF
    BACKGROUND: Despite the remarkable progress of bioinformatics, how the primary structure of a protein leads to a three-dimensional fold, and in turn determines its function remains an elusive question. Alignments of sequences with known function can be used to identify proteins with the same or similar function with high success. However, identification of function-related and structure-related amino acid positions is only possible after a detailed study of every protein. Folding pattern diversity seems to be much narrower than sequence diversity, and the amino acid sequences of natural proteins have evolved under a selective pressure comprising structural and functional requirements acting in parallel. PRINCIPAL FINDINGS: The approach described in this work begins by generating a large number of amino acid sequences using ROSETTA [Dantas G et al. (2003) J Mol Biol 332:449-460], a program with notable robustness in the assignment of amino acids to a known three-dimensional structure. The resulting sequence-sets showed no conservation of amino acids at active sites, or protein-protein interfaces. Hidden Markov models built from the resulting sequence sets were used to search sequence databases. Surprisingly, the models retrieved from the database sequences belonged to proteins with the same or a very similar function. Given an appropriate cutoff, the rate of false positives was zero. According to our results, this protocol, here referred to as Rd.HMM, detects fine structural details on the folding patterns, that seem to be tightly linked to the fitness of a structural framework for a specific biological function. CONCLUSION: Because the sequence of the native protein used to create the Rd.HMM model was always amongst the top hits, the procedure is a reliable tool to score, very accurately, the quality and appropriateness of computer-modeled 3D-structures, without the need for spectroscopy data. However, Rd.HMM is very sensitive to the conformational features of the models' backbone

    Role of simian virus 40 in cancer incidence in solid organ transplant patients

    Get PDF
    Transplant recipients have an increased risk of developing cancer in comparison with the general population. We present here data on cancer development in transplanted subjects who received organs from donors whose DNA was previously examined for the genomic insertion of Simian Virus 40 (SV40). Active follow-up of 387 recipients of solid organs donated by 134 donors, not clinically affected by cancer, was performed through the National Transplant Center (NTC). The average length of follow-up after transplant was 671±219 days (range 0–1085 days). Out of 134 proposed donors, 120 were utilised for organ donation. Of these, 12 (10%) were classified as positive for SV40 genomic insertion. None of the 41 recipients of organs from SV40 positive donors developed a tumour during the follow-up. In all, 11 recipients of organs given by SV40 negative donors developed a tumour (cancer incidence: 0.015 per year). In conclusion, cancer rates observed in our study are comparable to what reported by the literature in transplanted patients. Recipients of solid organs from SV40 positive donors do not have an increased risk of cancer after transplant. The role of SV40 in carcinogenesis in transplanted patients may be minimal

    Comparative genomics in cyprinids: common carp ESTs help the annotation of the zebrafish genome

    Get PDF
    BACKGROUND: Automatic annotation of sequenced eukaryotic genomes integrates a combination of methodologies such as ab-initio methods and alignment of homologous genes and/or proteins. For example, annotation of the zebrafish genome within Ensembl relies heavily on available cDNA and protein sequences from two distantly related fish species and other vertebrates that have diverged several hundred million years ago. The scarcity of genomic information from other cyprinids provides the impetus to leverage EST collections to understand gene structures in this diverse teleost group. RESULTS: We have generated 6,050 ESTs from the differentiating testis of common carp (Cyprinus carpio) and clustered them with 9,303 non-gonadal ESTs from CarpBase as well as 1,317 ESTs and 652 common carp mRNAs from GenBank. Over 28% of the resulting 8,663 unique transcripts are exclusively testis-derived ESTs. Moreover, 974 of these transcripts did not match any sequence in the zebrafish or fathead minnow EST collection. A total of 1,843 unique common carp sequences could be stringently mapped to the zebrafish genome (version 5), of which 1,752 matched coding sequences of zebrafish genes with or without potential splice variants. We show that 91 common carp transcripts map to intergenic and intronic regions on the zebrafish genome assembly and regions annotated with non-teleost sequences. Interestingly, an additional 42 common carp transcripts indicate the potential presence of new splicing variants not found in zebrafish databases so far. The fact that common carp transcripts help the identification or confirmation of these coding regions in zebrafish exemplifies the usefulness of sequences from closely related species for the annotation of model genomes. We also demonstrate that 5' UTR sequences of common carp and zebrafish orthologs share a significant level of similarity based on preservation of motif arrangements for as many as 10 ab-initio motifs. CONCLUSION: Our data show that there is sufficient homology between the transcribed sequences of common carp and zebrafish to warrant an even deeper cyprinid transcriptome comparison. On the other hand, the comparative analysis illustrates the value in utilizing partially sequenced transcriptomes to understand gene structure in this diverse teleost group. We highlight the need for integrated resources to leverage the wealth of fragmented genomic data

    Atypical glandular cells in conventional cervical smears: Incidence and follow-up

    Get PDF
    BACKGROUND: Atypical glandular cells on cervical smears are often associated with clinically significant uterine lesions. The frequency and accuracy of AGC-NOS (i.e. atypical glandular cells, not otherwise specified) diagnoses, regardless of the gland cell type or the degree of suspicion, and their outcome were investigated. METHODS: From January 1, 1990 to December 31, 1999 a total of 261 patients had an AGC-NOS diagnosis made by conventional cervical Papanicolaou smear interpretation representing 0.05% of all Pap-smears analyzed at the national level. 191 (73.2%) patients had a subsequent histological examination, 8 samples were not representative by origin and were excluded. RESULTS: Out of 183 AGC-NOS diagnosed, 56.3% (103/183) were associated with tissue-proven precancerous and/or cancerous lesions, 44% being of endocervical and 56% of endometrial origin. 75% of all AGC-patients were asymptomatic. 66.7% (6/9) of the patients with subsequent invasive endocervical adenocarcinoma (AC) and 56% (28/50) of those patients with invasive endometrial AC were without clinical symptoms. 3 patients out of 9 with an invasive endocervical AC were 35 years of age or less. 10.1% and 12.3% of all 'new' tissue-proven invasive endocervical or endometrial AC respectively recorded by the national Morphologic Tumour Registry (MTR) were first identified by a cytological AGC-NOS diagnosis. CONCLUSION: Our findings emphasize the importance of the cytological AGC-category even in the absence of a precise origin or cell type specification. 56% of the AGC-diagnoses being associated with significant cancerous or precancerous conditions, a complete and careful evaluation is required

    Cystinosin, MPDU1, SWEETs and KDELR Belong to a Well-Defined Protein Family with Putative Function of Cargo Receptors Involved in Vesicle Trafficking

    Get PDF
    Classification of proteins into families based on remote homology often helps prediction of their biological function. Here we describe prediction of protein cargo receptors involved in vesicle formation and protein trafficking. Hidden Markov model profile-to-profile searches in protein databases using endoplasmic reticulum lumen protein retaining receptors (KDEL, Erd2) as query reveal a large and diverse family of proteins with seven transmembrane helices and common topology and, most likely, similar function. Their coding genes exist in all eukaryota and in several prokaryota. Some are responsible for metabolic diseases (cystinosis, congenital disorder of glycosylation), others are candidate genes for genetic disorders (cleft lip and palate, certain forms of cancer) or solute uptake and efflux (SWEETs) and many have not yet been assigned a function. Comparison with the properties of KDEL receptors suggests that the family members could be involved in protein trafficking and serve as cargo receptors. This prediction sheds new light on a range of biologically, medically and agronomically important proteins and could open the way to discovering the function of many genes not yet annotated. Experimental testing is suggested

    The Chemotactic Defect in Wiskott-Aldrich Syndrome Macrophages Is Due to the Reduced Persistence of Directional Protrusions

    Get PDF
    Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor that is required for macrophages to directionally migrate towards various chemoattractants. The chemotaxis defect of WASp-deficient cells and its activation by Cdc42 in vivo suggest that WASp plays a role in directional sensing, however, its precise role in macrophage chemotaxis is still unclear. Using shRNA-mediated downregulation of WASp in the murine monocyte/macrophage cell line RAW/LR5 (shWASp), we found that WASp was responsible for the initial wave of actin polymerization in response to global stimulation with CSF-1, which in Dictyostelium discoideum amoebae and carcinoma cells has been correlated with the ability to migrate towards chemoattractants. Real-time monitoring of shWASp cells, as well as WASp−/− bone marrow-derived macrophages (BMMs), in response to a CSF-1 gradient revealed that the protrusions from WASp-deficient cells were directional, showing intact directional sensing. However, the protrusions from WASp-deficient cells demonstrated reduced persistence compared to their respective control shRNA and wild-type cells. Further examination showed that tyrosine phosphorylation of WASp was required for both the first wave of actin polymerization following global CSF-1 stimulation and proper directional responses towards CSF-1. Importantly, the PI3K, Rac1 and WAVE2 proteins were incorporated normally in CSF-1 – elicited protrusions in the absence of WASp, suggesting that membrane protrusion driven by the WAVE2 complex signaling is intact. Collectively, these results suggest that WASp and its phosphorylation play critical roles in coordinating the actin cytoskeleton rearrangements necessary for the persistence of protrusions required for directional migration of macrophages towards CSF-1
    • …
    corecore